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ABSTRACT

Mapping and Spatiotemporal Characterization of Degraded Forests in the Brazilian

Amazon through Remote Sensing

by

Carlos Moreira de Souza Jr.

Large forested areas have recently been impoverished by degradation caused by
selective logging, forest fires and fragmentation in the Amazon region, causing
partial change of the original forest structure and composition. As opposed to
deforestation that has been monitored with Landsat images since the late 70’s,
degraded forests have not been monitored in the Amazon region. In this dissertation,
remote sensing techniques for identifying and mapping unambiguously degraded
forests with Landsat images are proposed. The test area was the region of Sinop,
located in the state of Mato Grosso, Brazil. This region was selected because a
gradient of degraded forest environments exist and a robust time-series of Landsat
images and forest transect data were available. First, statistical analyses were applied
to identify the best set of spectral information extracted from Landsat images to
detect several types of degraded forest environments. Fraction images derived from

Spectral Mixture Analysis (SMA) were the best type of information for that purpose.

viil



A new spectral index based on fraction images — Normalized Difference Fraction
Index (NDFI) - was proposed to enhance the detection of canopy damaged areas in
degraded forests. Second, a contextual classification algorithm was implemented to
separate unambiguously forest degradation caused by anthropogenic activities from
natural forest disturbances. These techniques were validated using forest transects
and high resolution aerial videography images and proved to be highly accurate.
Next, these techniques were applied to a time-series data set of Landsat images,
encompassing 20 years, to evaluate the relationship between forest degradation and
deforestation. The most important finding of the forest change detection analysis was
that forest degradation and deforestation are independent events in the study area,
making worse the current forest impacts in the Amazon region. Finally, the
techniques developed and tested in the Sinop region were successfully applied to
forty Landsat images covering other regions of the Brazilian Amazon. Standard
fractions and NDFI images were computed for these other regions and both
physically and spatially consistent results were obtained. An automated decision tree
classification using genetic algorithm was implemented successfully to classify land
cover types and sub-classes of degraded forests. The remote sensing techniques
proposed in this dissertation are fully automated and have the potential to be used in

tropical forest monitoring programs.
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CHAPTER I: Introduction

1.1 Overview and Research Significance

The Brazilian Amazon rainforest covers about 40% of the remaining tropical
forests in the world. Its role in keeping biodiversity, regulating regional climate and
continental hydrological cycles, and storing carbon has been largely recognized
(Fearnside 1996; Skole and Tucker, 1993). Over the past 30 years, the Brazilian
Amazon rainforest, referred to as the Amazon from now on, has been rapidly
converted to pastures and agricultural areas through deforestation (Fearnside 1989;
Moran 1993; Alves and Skole, 1996). Until the year 2000, estimates of deforestation
from Landsat images for the Amazon region showed that 587 thousand km? had
already been deforested. When added to the partial estimates for 2001 through 2003,
the deforested area reaches about 650 thousand km?”, with an average rate of forest
loss of about 23,000 km? yr' for this period (INPE, 2003).

Tropical deforestation has a direct impact on world wide levels of biodiversity,
and on regional hydrological, biogeochemical and climate cycles (e.g., Bazzaz,
1998; Giambelluca, 2002; Houghton et al.,2000). Because of these environmental
problems, Amazonian deforestation and its related impacts have called the attention
of the scientific, environmental and policy making communities. For this reason,
deforestation in the Amazon has been well documented, and monitoring programs
that use satellite images to map deforestation have been conducted, at both national

(e.g., PRODES — Monitoramento da Floresta Amazonica Brasileira por Satélite - by



the Brazilian space agency INPE) and international (e.g., TREES — Tropical
Ecosystem Environment Observation by Satellites - by the Joint Research Center
from the European Community) levels.

Deforestation also fragments the landscape and creates more edges between
forests and non-forested areas (Laurance et al., 2000). By 1988, the forest area at
risk of edge effect (< 1 km from the forest edge) in the Amazon was about 150%
larger than the total area deforested (Skole and Tuchker, 1993). Forest edges are
affected by solar radiation, wind and agricultural fires (Cochrane and Laurance,
2002). Forest inventory studies have shown that the biomass of forest edges
decreases drastically within 100 meters of the edges (Laurance et al., 1998). The
species diversity and composition also changes in the forest edges and the edge
effect could contribute significantly to the emission of green house gases such as
CO; (Laurance et al., 1998). All of these factors lead to a more degraded forest
environment along the forest edges.

Unfortunately, deforestation and its associated forest fragmentation impacts are
not the only threat to the integrity of the Amazon forests. Large forested areas have
recently been impoverished by degradation caused by selective logging (Uhl and
Vieira 1989; Uhl ef al. 1997; Nepstad et al. 1999), forest fires (Uhl and Kauffman
1990, Cochrane and Shultz, 1999; Nepstad et al., 1999), and forest fragmentation
(Laurance et al. 2000). Forest degradation changes partially the original structure

and composition of the forests by decreasing forest biomass (Cochrane and Schulze



1999; Gerwing and Farias 2000), creating favorable environments for non-native
species (Vidal et al. 1997), and causing local species extinction (Martini ef al. 1994).

It has been estimated through field surveys and socio-economic interviews that
up to 10,000-15,000 km? are logged, 80,000 km? are burned, and 38,000km2 are
fragmented each year (Nepstad et al., 1999), making the area affected by forest
degradation much larger than the area deforested annually in the Amazon. Estimates
from Landsat images do not agree with the field estimates and with each other. For
example, Santos et al. (2002) estimated from Landsat images that the area affected
by selective logging in 1992 and 1996 were 1,000 km? and 1,571 km?, respectively.
Matricardi et al., (2001) presented significantly different estimates for these years —
5,627 km? for 1992 and 9,449 km? for 1996. The differences in these satellite image
estimates are associated with the methodology and mapping scale. The former
estimates were based on visual interpretation of Landsat images at a 1:250,000 scale
whereas the later one used a hybrid classification approach that combines automated
classification (Souza Jr. and Barreto, 2000) and visual interpretation.

As opposed to deforestation, degraded forests have not been monitored on a
regular basis in the Amazon region. There exist, however, a few site-specific studies
that characterize degraded forests at the field scale (e.g., Johns et al. 1996; Gerwing
2002; Pereira et al., 2002). Remote sensing techniques to map the area affected by
selective logging (e.g., Stone and Lefebvre 1998; Souza Jr. and Barreto 2000) and
burned forests (Cochrane and Souza Jr., 1998) have also been proposed.

Additionally, there are some attempts to correlate field inventory data on forest



degradation with remotely sensed data (Asner et al., 2002; Souza Jr. et al., 2003).
The ecological field studies have shown that there are several levels of forest
degradation due to different intensities and frequencies of selective logging, burning
and fragmentation (Barros and Uhl 1995; Verissimo et al. 1995; Johns et al. 1996;
Cochrane and Shultz, 1999; Gerwing 2002) which creates a continuum from intact
forests to degraded forests. Thus, defining the boundaries between intact forests and
the classes of degraded forests with remotely-sensed data becomes a challenge. This
is one of the problems investigated in this Ph.D. research.

Degraded forests change rapidly, usually within one to two years, due to canopy
closure and invasion of non-native species such as lianas (Guariguata and Dupuy
1997; Magnusson et al. 1999; Gerwing and Farias 2000). This rapid change in the
degraded forest environment may cause degraded forests areas to be misclassified as
intact forests, when using remote sensing data acquired with Landsat TM/ETM
(Thematic Mapper/Enhanced Thematic Mapper) or SPOT 4 (Satellite Pour
L'observation de la Terre). In addition, degraded forest can be converted to
agricultural and pasture fields through deforestation, but the rate of conversion has
not been investigated. These land cover change issues are another problem examined
in this study. Finally, a generic image classification approach is proposed to map
unambiguously forest degradation caused by anthropogenic and natural disturbances.

Even though forest fragmentation is not an object of study in this dissertation, the
remote sensing methods proposed here have the potential to map forest fragments and

detect forest degradation along forest edges, such as forest burning. The research



issues presented here are also relevant to improving carbon flux models in the
Brazilian Amazon. Forest degradation has a direct impact on biomass loss which,
although partially compensated by regeneration, still results in a net loss of carbon
(Gerwing, 2002). Therefore, mapping and quantifying forest degradation changes
reduce the large uncertainty in carbon balance existing in the Brazilian Amazon
(Houghton et al. 2001).

This study was conducted in Sinop, Mato Grosso State (Figure 1), which is ideal
for investigating the problems described above because it has a gradient of forest
degradation classes, and because a robust time-series of Landsat imagery
encompassing 20 years is available. Additionally, aerial videography and high
spatial resolution satellite imagery is available for map accuracy assessment. The
Landsat images were chosen because they offer enough spectral and spatial
resolutions to monitor the Brazilian Amazon forests, and because historical data
covering more than 30 years is available for the region. Finally, the image
classification methods developed in this research were tested extensively through out

the Amazon region.

1.2 Objectives

This research has five major objectives addressing one or more research
questions. The objectives aim to:
I Characterize the spectral and temporal properties of degraded forests
using Landsat TM/ETM+ images; the following questions were

addressed:



a. What is the best set of spectral information to detect forest
degradation?

b. How long do the degraded forest ‘signatures’ persist?

c. What is the optimal temporal resolution for mapping degraded
forests?

IT) Develop a technique that combines spectral and spatial information to
enhance unambiguously the detection and mapping of canopy damage
caused by forest degradation.

II)  Characterize the spatiotemporal dynamics of degraded forests; the
following questions were addressed in this objective:

a. What is the fate of the degraded forests?
b. What is the rate of forest degradation?
c. How much of the degraded forests is converted by deforestation?

IV)  Develop a generic image processing and classification approach for
monitoring the Amazon forests.

V) Compare relative importance of selective logging across regions.

1.3 Summary of the Chapters

This section describes chapters II through VI of this dissertation. Chapter II
focuses on research objective 1. A statistical multi-temporal analysis is described to
evaluate the capability of reflectance, vegetation indices (NDVI and SAVI),

normalized difference infrared indices (NDIIS and NDII7) and fraction images,



derived from spectral mixture analysis (SMA), to distinguish Intact Forest from four
classes of degraded forests: Non-mechanized Logging, Managed Logging,
Conventional Logging and Logged and Burned. For this purpose, a robust time-
series data set of Landsat TM/ETM+ images was used in conjunction with forest
inventory transects and data on forest disturbance history.

Chapter III focuses on objective II, where a new spectral index, the Normalized
Difference Fraction Index (NDFI), is proposed for enhanced detection of forest
canopy damage caused by selective logging activities and associated forest fires. The
NDFI synthesizes information from several fraction images derived from spectral
mixture models. In addition, a contextual classification algorithm (CCA) is
presented for accurate mapping of logging- and fire-derived canopy damages. The
combination of the new NDFI spectral index with the CCA allows separation of
canopy changes due to logging and associated forest fires from those caused by other
natural disturbances.

Chapter IV presents the results of the multi-temporal forest change analysis
developed to address the research questions of objective III. A robust time-series
Landsat imagery data set, encompassing 20 years, was used for this purpose. Chapter
V focuses on objectives IV and V, and describes an automatic generic image
processing and classification approach to monitor forest degradation in the Brazilian
Amazon and provides a comparison of the relative importance of selective logging
across regions. Finally, Chapter VI summarizes the main findings of each research

objective and points out to future research directions.



CHAPTER II: Multi-temporal Analysis of Degraded Forests in

the Southern Brazilian Amazon'

2.1 Introduction

Selective logging, fragmentation and forest burning are the main factors
contributing to forest degradation of Brazilian Amazon. The major impacts of these
anthropogenic disturbances include: decreasing forest biomass (Cochrane and
Schulze, 1999; Gerwing 2002), creating favorable environments for non-native
species (Vidal et al., 1997), and causing local species extinctions (Martini et al.,
1994). It has been estimated through field surveys and socio-economic interviews
that up to 10,000-15,000 km? are logged, 80,000 km? are burned, and 38,000km2 are
fragmented each year (Nepstad et al.,1999), making the area affected by forest
degradation much larger than the area deforested annually in the Amazon, which
averages around 18,000 km’year” (INPE, 2003).

Several methodologies have been developed for mapping selectively logged and
burned forests in the Brazilian Amazon using multispectral satellite images.
Examples include visual interpretation (Watrin and Rocha, 1992), supervised
classification (Stone and Lefebvre, 1998), soil fraction images obtained through
spectral mixture analysis (SMA) (Souza Jr. and Barreto, 2000; Monteiro et al.,

2003), contextual clustering (Sgrenzaroli et al., 2002) and decision tree classification

! Accepted for publication: Souza Jr., et al. (in press a).



(Souza et al., 2003). Additionally, efforts have been made to link forest biophysical
properties of selectively logged forests with remotely sensed data (Asner et al., 2002,
Souza Jr. et al., 2000). Burned forests have also been successfully mapped with non-
photosynthetic vegetation (NPV) (Roberts et al., 1993) fraction images in the eastern
Amazon (Cochrane and Souza Jr., 1998).

To date, few studies have employed multi-temporal data to map forest
degradation, which is an important attribute for monitoring tropical forests (Lambin,
1999). Single date or infrequent satellite acquisitions represent a potential source of
error due to rapid canopy closure and regeneration of degraded forest, leading to
misclassification of degraded forests as intact (Stone and Lefebvre, 1998).
Furthermore, while several authors have used at least two dates to characterize
selectively logged forests (Stone and Lefebvre, 1998; Souza and Barreto, 2000;
Monteiro et al., 2003, Asner et al., 2002; Asner et al., 2004a), the same types of
temporal analysis have not been applied to characterize burned forest dynamics.
Currently, no study has used high temporal frequency images (i.e., at least one per
year) to characterize change dynamics of the full range of forest degradation classes
existing in the Amazon region. As a result, the optimal temporal resolution for
mapping degraded forests has yet to be determined. In this study, I seek an
understanding of the temporal dynamics of degraded forests. Specifically, the
following questions are addressed: 1) how long do the degraded forest ‘signatures’
persist on Landsat images?; and 2) what is the optimal temporal resolution for

mapping degraded forests with Landsat images? To answer these questions, changes



in reflectance, vegetation and infrared indices, and fraction images derived from
SMA are evaluated over a chronosequence of well-characterized degraded forest
types. Image analysis utilized a robust time series data set of Landsat TM/ETM+
images, encompassing 20 years of images acquired for every year. Field data
included nineteen forest transect inventories covering all types of degraded forests

found in the study area.

2.2 Study Area and Forest Degradation Patterns

The study area is located in the state of Mato Grosso, in the vicinity of Sinop and
Claudia sawmill centers (Figure 1). Transitional forest, between ‘cerrado’ and dense
forest, is the predominant vegetation type in the region. The topography varies from
flat to undulating terrain, on latosol soils, and the average annual precipitation is
2,000 mm (RADAMBRASIL, 1981).

Selective logging in this area is characterized by the harvesting of high quality
timber species. The harvesting intensity ranges from 10 to 40 m*/ha and is
predominantly unplanned (Monteiro et al., 2004). Three types of selectively logged
forest were identified in the field: Non-mechanized Logging, Managed Logging and
Conventional Logging forests (Table 1). At the field scale, logged forests are
composed of three main environments: 1) forest islands that were not disturbed
because of poor access due to topography and rivers, or due to the lack of
commercial timber species; ii) areas where the forest had been cleared to create roads

for machine movements (skidders and trucks) and log landings to store the harvested
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timber; and ii1) canopy damaged forests (i.e., harvested areas and areas damaged by

tree falls and machine movements). This pattern is similar to the logging pattern

found in dense forest areas in the eastern Amazon (Verissimo et al., 1992; Johns et

al., 1996), differing only in the harvesting intensity (30-40 m*/ha).
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Figure 1. Map of the study area showing the location of the forest transects

used to extract satellite pixel data.
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Table 1. Characterization of the forest classes defined at the field scale.

Forest class

Field Description

Intact Forest

Mature and undisturbed forest

Non-mechanized
logging

Logged forest without the use of vehicles such as skidders
and trucks, also known as traditional logging. Log
landings, roads and skid trails are not built.

Managed logging

Planned selective logging where a tree inventory is
conducted, followed by planned roads, log landings, skid
trails and tree fall to reduce harvesting impacts.

Conventional Logging

Conventional unplanned selective logging using skidders
and trucks. Log landings, roads and skid trails are built.

Logged and burned

Either non-mechanized or conventionally logged forests
that have subsequently been damaged by forest fires.

Forest burning is also frequent in this region, acting synergistically with selective

logging to increase forest degradation damages (Monteiro et al., 2004). Selectively

logged forests can burn when agricultural fires escape unintentionally from adjacent

areas. Prolonged forest surface fires eventually reach the heat tolerance of trees and

lianas, which can lead to tree mortality (Holdsworth and Uhl, 1997; Cochrane and

Shultz, 1999). As a result, the forests become more degraded and more fuel is

accumulated on the forest floor (Cochrane et al., 1999). A second forest surface fire

event will likely burn the forest floor more severely and kill more trees (Table 1).
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2.3 Data set

2.3.1 Satellite Imagery Data

Eighteen Landsat Thematic Mapper 5 (TM) images and three Landsat Enhanced
Thematic Mapper (ETM+) images, acquired between June 1984 and July 2004, were
used in this study (Table 2). The images were acquired through the Tropical Rain

Forest Information Center (TRFIC) and the Brazilian Space Agency (INPE).

Table 2. Landsat TM/ETM+ data used in this study (orbit/point = 226/068).

Year Landsat Sensor Month, Day Source
1984 ™S June, 14 INPE
1985 T™MS5 July, 3 INPE
1986 T™MS August, 7 INPE
1987 ™S June, 25 INPE
1988 T™MS August, 11 INPE
1989 ™S August, 31 INPE
1990 T™MS August, 02 INPE
1991 ™S5 July, 02 INPE
1992 ™S July, 25 INPE
1993 ™S August, 26 INPE
1994 ™S July, 02 INPE
1995 ™S June, 13 INPE
1996 T™MS July, 01 TRFIC
1997 T™M5 August, 5 INPE
1998 ™S June, 6 INPE
1999 ETM+ August, 19 TRFIC
2000 ™S June, 26 INPE
2001 ETM+ August, 8 INPE
2002 ETM+ July, 10 INPE
2003 T™M5 August, 6 INPE
2004 T™S June, 5 INPE

! Brazilian Space Agency
Tropical Rain Forest Information Center
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2.3.2 Forest Transect Inventory

Nineteen forest transect inventories were conducted in the study area (Figure 1;
Tables 3). For the purposes of this study, information about logging and fire
histories, ground cover, canopy cover and biomass was used to classify the forest
degradation classes found at the field scale into four degradation classes: Non-
mechanized Logging, Managed Logging, Conventional Logging and Logged and
Burned (Tables 1 and 3). The forest inventories were conducted following the field
protocol proposed by Gerwing (2002) to characterize degraded forest in the eastern
Amazon. This method has been successfully applied to characterize biophysical
properties and dynamics of degraded forests in transitional forests (Monteiro et al.,
2004).

All trees with Diameter at Breast Height (DBH) greater than 10 cm were mapped
along a 10 m by 500 m transect. In addition, ten sub-parcels (10 m x 10 m) were
created every 50 meters along each transect. All trees where mapped within the sub-
parcels and ground cover and canopy gaps were estimated using a hemispherical lens
and densiometer. Above ground biomass was estimated using allometric equations
available in the literature (Gerwing, 2002; Monteiro et al., 2004), adapted

specifically by Gerwing (2002), for degraded forests and estimating vine biomass.

2.4 Methodology
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Table 3. Classification and disturbance history of the forest transects of the study area.

Yearofthe  Time since Time since
First Forest - Number Volume Number
Transect first last
Class Latitude Longitude Degradation . . of Times Harvested of times
Number E Logging Logging L d 3h B d
vent (years) (years) ogge (m“/ha) urne
Intact 11 -11.546110 -54.933040
Intact 12 -11.540960 -54.931850
Intact 13 -11.540550 -54.923930
Intact 14 -11.579852 -55.200937
Non-mechanized Logging 1 -11.407170 -55.011950 1999 2 2 1 10
Non-mechanized Logging 2 -11.432190 -55.095040 199 5 5 1 10
Non-mechanized Logging 6 -11.391950 -55.016940 1999 2 2 1 10
Non-mechanized Logging 9 -11.443970 -54.924020 1990 11 10 2 25
Non-mechanized Logging 10 -11.443660 -54.914810 1987 14 10 2 25
Managed Logging 15 -11.5010674  -55.1730850 2000 4 4 1 38
Managed Logging 16 -11.5068618 -55.2838944 2001 3 3 1 32
Managed Logging 17 -11.555747 -55.205766 2002 2 2 1 40
Managed Logging 18 -11.562731 -55.284380 2003 1 1 1 40
Managed Logging 19 -11.588599 -55.302101 2004 0 0 1 25
Conventional Logging 7 -11.721690 -54.866760 1997 4 4 1 10
Conventional Logging 8 -11.697990 -54.915840 1993 8 8 1 10
Logged and burned 3 -11.367190 -55.010760 1990 2 2 1 25 1
Logged and burned 4 -11.376690 -55.013770 1999 2 2 1 25 1
Logged and burned 5 -11.342810 -55.047980 1999 2 2 1 25 1




2.4.1 Pre-Processing: image registration, atmospheric correction

and inter-calibration

The images were registered and radiometrically inter-calibrated in order to allow
the detection of forest change over time. The Landsat ETM+ image acquired in 1999
was georeferenced using twenty-five control points extracted from NASA GeoCover

2000 Mosaic (https://zulu.ssc.nasa.gov/mrsid/). Next, the 1999 georectified Landsat

image was used as the reference image to register the images acquired on the other
dates (Table 2). The registration was based on the triangulation algorithm and
nearest neighborhood resampling available in The Environment for Visualizing
Images 4.0 software (ENVI; Research Systems, Boulder, CO), using at least 14
image control points. The Root Mean Squared (RMS) varied from 0.53 to 0.97,
which assures that the changes detected over time were not contaminated by
misregistration (Verbyla and Boles, 2000).

The Landsat ETM+ image from 1999 was first radiometricaly corrected using
the gains and offset provided in the image metafile. Next, an atmospheric correction
was performed using Atmospheric Correction Now 4.0 (ACORN:Analytical Imaging
& Geophysics, Boulder, CO). Visibility and water vapor parameters of the
atmospheric correction model were determined by a trial-and-error sensitivity
analysis of a dark object reflectance (a lake). The final parameters were estimated
when the expected reflectance values of the dark object were found. The fixed water

vapor was 40 millimeters, and image atmosphere visibility 25 kilometers.
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The other images (Table 2) were inter-calibrated to the reflectance image using a
relative radiometric calibration approach (Roberts et al., 1998; Furby and Campbell,
2001). This technique assumes that the atmosphere is uniform over the study area,
and that invariant ground targets can be found over time. Invariant targets
representing forest, second growth, green pasture, bare soil and water were selected
for each image pair formed by the 1999 reference image and an uncalibrated image.
A linear regression was estimated using the pixel mean values, extracted from a 3 by
3 pixel area, of the invariant targets for each band. These coefficients normalize the
uncalibrated images to the 1999 reference image, converting Digital Numbers of the

uncalibrated images to reflectance.

2.4.2 Endmember Selection

Image endmembers representing vegetation, soil and NPV were extracted from
the reference reflectance image. Shade was assigned zero percent reflectance at all
wavelengths. The pixel-purity-index (PPI), available in ENVI 4.0 (Boardman et al.,
1995) was used to identify image endmember candidates. Five image subsets
(500x500 pixels), representing the variety of land cover types found in the images,
were used as input for the PPI algorithm. The PPI result was used to identify the
pixel location in the original image and extract the spectral curves of these pixels.
The final image endmembers were selected based on the pixel location in the
Landsat reflectance spectra with the aid of an n-dimensional visualization tool
available in ENVI. The pixels located at the extremes of the data cloud of the

Landsat spectral space were selected as candidate endmembers. The final
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endmembers were selected based on the spectral shape and image context (e.g., soil
spectra are mostly associated with unpaved roads and NPV with pasture having

senesced vegetation).

2.4.3 Spectral Mixture Analysis

Spectral Mixture Analysis — SMA — (Adams et al., 1993) assumes that the image

spectra are formed by a linear combination of n pure spectra, such that:

R = Z Fj Ri,b+8b (D

i=1

for

" F-1 )

i=1

where Rb is the reflectance in band b, F, the fraction of endmember 7, Ri b is the

reflectance for endmember i, in band b, and ¢, is the residual error for each band.

The SMA model error is estimated for each image pixel by computing the RMS

error, given by:
RMS = [ g,]" (3)
b=

Mixture models were applied to each date using the inter-calibrated image
endmembers, except the reference image, which was the one used to extract the
endmembers. The mixing model results were evaluated as proposed by Adams et al.
(1993). First, the RMS images were inspected and models with RMS values greater

than 5% were discarded from the fraction change analysis. Next, fraction images
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were evaluated and interpreted in terms of field context and spatial distribution. For
example, high abundance of soils is mostly associated with dirt roads and high NPV
is usually found in pastures. Finally, the histograms of the fraction images were
inspected to quantify the percentage of pixels lying outside the range of zero to
100% and to evaluate fraction value consistency over time (i.e., intact forest shows
approximately stable values over time). Only models with at least 98% of the values
within zero to 100% and those that showed mean fraction value consistency over
time were kept. For the models that did not pass one of these tests new invariant
targets were collected to improve the image inter-calibration coefficients and a new

SMA model was run until the criterion was reached.

2.4.4 Vegetation and Near Infrared Indices

Two vegetation indices and two normalized difference infrared indices (NDII)
were selected for assessing if it was possible to distinguish Intact Forest from the
degraded forest classes. The vegetation indices chosen were the normalized
difference vegetation index (NDVI; Rouse et al., 1974), and the soil adjusted
vegetation index (SAVI; Huete, 1988). These vegetation indices use reflectance
measurements from Landsat band 3 (py3) and band 4 (py4), and are computed with

the following equations:
NDVI = (pv4 — pv3)/( Pos + po3) 4)

SAVI= 1.5*(pb4 -pb3)/( Pb4 +pb3+0.5) (5)
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The normalized difference infrared indices (NDII) chosen are the ones proposed
by Hunt and Rock (1989) to identify forest disturbances associated with water

content. These NDII indices are computed using Landsat band 4 (pp4), band 5 (pps)
and band 7 (py7), and are given by:
NDII5 = (pbs — Pbs)/( Poa + Pos) (6)

NDII7 = (po4 — Po7)/( Poa + Pv7) (7

2.4.5 Class Separability and Temporal Change Analyses

Using the information on logging and fire histories acquired during field research
and the Landsat time-series, it was possible to identify the date prior to degradation,
representing the image condition of Intact Forest. Next, reflectance and fractions of
GV, NPV, Shade and Soil were extracted using 30 pixels selected randomly within a
buffer region of 5 pixels along each transect. Random pixels located in logging roads
and log landings were excluded from the analysis because changes from Intact
Forest to clear-cut are relatively easier to identify (Souza Jr. and Barreto, 2000;
Monteiro et al., 2003). Less than one percent of the random pixels were excluded
following this criterion. The vegetation and infrared indices were computed using
the reflectance values extracted from the 30 randomly selected pixels. This
procedure allowed us to build a time-series data set of reflectance, vegetation and
infrared indices and fraction values covering the time prior to degradation (i.e,

degradation age equals zero) to up to four years after the event.
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The next steps were to perform a class separability and temporal change analyses
based on reflectance, vegetation and infrared indices, and fractions variables. The

Tukey test (Ott, 1992), available in the R Language (http://www.r-project.org/), was

used to evaluate if the Intact Forest and the forest degradation classes could be
separated from each other, and to define for how long the degradation classes could
be distinguished from the Intact Forest class over a period of four years. The Tukey
test was run at a 99% confidence interval (P < 0.01).

The Tukey test performs a multicomparison of the population means of the Intact
Forest and degraded forest classes, i.e., tests the mean of a population against the
mean of each other population. For the purpose of the class separability analysis, the
populations are represented by the data acquired prior to the degradation event
representing Intact Forest, and the year right after degradation representing the
degraded forest classes (Non-mechanized Logging, Managed Logging, Conventional
Logging and Logged and Burned). For the purpose of the temporal statistical
analysis, the populations are represented by a time variable, encompassing the year
prior to the degradation process (i.e., Time=0 means Intact Forest) up to four years
after degradation (Time=1,..., 4).

Because the Tukey test requires normally distributed samples, a data
transformation was applied when necessary by computing the arcsine of the square-
root of the data variable (Hogg and Graig, 1994) prior to statistical analysis. The
results of the multicomparison statistical analysis are reported only for the

comparison of the year prior to the degradation event against each other year. The
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Tukey test also allowed us to determine how many years a significant difference

between Intact Forest and the degradation classes persisted over time.

2.5 Results

2.5.1 First Year Forest Degradation Separability

Four classes of degraded forests were identified and characterized at the field
scale: Non-mechanized Logging, Managed Logging, Conventional Logging and
Logged and Burned (Table 1). The reflectance, vegetation and infrared indices and
fraction means of Intact Forest were compared relative to each class of degraded
forest, and between the other degraded forest classes. Figures 2 and 3 show the
results of the class separability analysis, discussed for each type of data set below

one year after the event (Also, Time=1 in Table 4).

a) Reflectance

Mean spectral reflectance +/- one standard deviation is plotted for Intact Forest
and the degradation classes in Figure 2a. Qualitative inspection of these spectra
indicates high overlap in the Landsat spectral bands making the distinction of these
classes challenging.

Statistically, the Tukey test (P<0.01) revealed that spectral differentiation of
Managed Logging, Conventional Logging and Logged and Burned classes from
Intact Forest was possible in the visible part of the spectrum (bands 1-3) for the year

the degradation took place (Time=1; Table 4). Non-mechanized Logging, however,
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showed only a significant change from Intact Forest in band 1. Overall, the
differentiation among the other degraded forest classes was also possible in the
visible region, except between Non-mechanized and Managed Logging, which did
not show significant change in reflectance in the visible region.

According to the statistical test, it was possible to differentiate Intact Forest from
the degraded forest classes, and between each other degraded forest classes, in the
near- and mid-infrared spectral region using one or two bands. Non-mechanized
Logging could not be distinguished in this part of the spectrum from Intact Forest. In
the infrared region, only Managed Logging and Logged and Burned classes showed
significant statistical differences from Intact Forest in bands 3, 4 and 5. Conventional
Logging class showed a significant difference only in band 5 (Figures 2a; Table 4).

A general trend of increasing the mean forest reflectance (1-2%) as a function of
degradation intensity was observed in the visible part of the spectrum (Figure 3a). In
the near-infrared region, band 4 showed a decrease (1-3%) in mean reflectance as a
function of degradation intensity, whereas in the short-wave-infrared mean

reflectance increased (1-3%; Figure 3a).

b) Vegetation Indices

The spectral vegetation indices, which rely on high spectral contrast between red
and near-infrared bands, did not differentiate Non-Mechanized Logging from Intact
Forest, due to a high overlap between these classes in these two spectral regions
(Figure 2a-b; Table 4). However, Managed Logging, Conventional Logging and

Logged and Burned classes showed a significant difference from Intact Forest and
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between each other with NDVI and SAVI (Figure 2b; Table 4). Nonetheless, no

significant difference was observed between each other degraded forest classes.
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Figure 2. Means and standard deviations (vertical error bar) of intact forest
and degraded forests classes as measured by Landsat bands: (a) reflectance; (b)
vegetation and infrared indices; and (c) fraction images.

The infrared indices showed a general decreasing trend as a function of
degradation intensity (Figures 2b and 3b). Non-mechanized Logging could not be
distinguished from Intact Forest and from the other degraded forest classes.
However, Managed Logging, Conventional Logging and Logged and Burned
showed significant differences from Intact Forest and from each other with the

Tukey test (Table 4).
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Table 4. Means and standard deviation of fractions, reflectance and indices of forest degradation classes through time.

Numbers in bold face denote significant differences between Intact Forest (Time=0) and degraded forest classes

(Time=1,..., 4) at P<0.01 utilizing a Tukey test.

(a)

. GV NPV Soil Shade Bf1 B2 B3 B4 B5 B7
Class Time (%) (%) (%) (%) %) R %) R (%) (%) NDVI SAVI NDII5 NDII7
0 39 8 2 52 063 252 138 2593 1333 427  0.90 1.35 0.32 0.72
(5) @) 1) @) (1) (05) (05) (23) (14) (0.7)  (0.03)  (0.05)  (0.04)  (0.04)
b 1 41 6 3 53 183 264 147 2674 1355 420  0.90 1.34 0.33 0.73
N (5) 3) @) (5) (06) (05) (05) (24) (14) (0.9) (0.04)  (0.06)  (0.06)  (0.05)
§ g 2 43 7 2 48 236 331 1.84 2864 1407 507  0.88 1.32 0.34 0.70
= §’ (8) 3) (1) (6) 31)  (13) (07) (35 (1.3) (1.0)  (0.04)  (0.06)  (0.07)  (0.05)
5 3 42 6 3 50 063 254 120 2619 1372 445 091 1.37 0.31 0.71
< (5) @) 1) @) (20) (03) (06) (22) (1.3) (0.8)  (0.04)  (0.06)  (0.04)  (0.04)
4 47 5 1 46 128 263 139 2742 1344 437  0.90 1.36 0.34 0.73
6) @) (1) @) 05 (07) (07) (22) (14) (0.6)  (0.04)  (0.06)  (0.04) _ (0.03)

(b)

. GV NPV Soil Shade B1 B2 B3 B4 B5 B7
Class Time (%) (%) (%) (%) %) %) ) R A (%) NDVI SAVI NDII5 NDII7
0 40 5 2 50 162 270 147 2701 1341 426  0.90 1.34 0.34 0.73
@) 3) 1) 3) (05) (03) (04) (14) (1.2) (06) (0.03)  (0.04)  (0.04)  (0.04)
1 40 6 3 51 226 287 192 2549 1477 516  0.86 1.29 0.27 0.66
%o 6) @) (1) @) (05) (04) (05) (21) (1.5) (0.9) (0.04)  (0.06)  (0.08)  (0.06)
=Y 2 47 6 2 45 166 266 153 2597 1376 461 0.89 1.33 0.31 0.70
(E% g" (6) @) (1) (5) (07) (05) (06) (1.9) (1.3) (0.7)  (0.04)  (0.06)  (0.05)  (0.05)
3 48 5 3 45 109 249 141 2653 1347 454  0.90 1.35 0.33 0.71
@) @) 1) 3) (05 (06) (07) (16) (1.7) (0.8)  (0.05)  (0.07)  (0.05)  (0.05)
4 40 6 3 50 151 288 180 2626 1338 444 087 1.31 0.33 0.71
(5) ) (1) 4) (04) (05 (05 (18) (15) (0.8) _ (0.03) _ (0.05) _ (0.05) _ (0.04)
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(©)

(d)

. GV NPV Soil Shade Bf1 B2 B3 B4 B5 B7
Class Time (%) (%) (%) (%) %) R %) R (%) (%) NDVI SAVI NDII5 NDII7
0 45 3 2 50 172 211 098 2462 1272 3.92 0.92 1.38 0.33 0.73
3) @) 1) 3) (07)  (03) (05 (21) (1.1) (0.7)  (0.02)  (0.04)  (0.05)  (0.05)
_ 1 38 10 4 52 150 334 280 2465 1619  6.21 0.88 1.31 0.27 0.66
g > 9) @) 3) 4) (190 (13) (1.8) (28) (36) (26) (0.11)  (0.16)  (0.13)  (0.14)
§ % 2 38 5 3 54 062 263 170 2566 14.36 495  0.89 1.34 0.31 0.70
2 S @) @) @) (5) (1.9)  (06) (0.9) (29) (24) (15  (0.05)  (0.08)  (0.08)  (0.07)
8 3 35 8 3 54 108 233 142 2587 1348  4.42 0.92 1.37 0.34 0.73
(6) @) @) (5) (05 (07) (0.8) (27) (20) (15  (0.05)  (0.07)  (0.06)  (0.07)
4 41 5 3 52 245 258 156 2666 1399 485  0.87 1.31 0.30 0.69
(5) @) (1) ) (04) (06) (0.8 (26) (1) (1.3)  (0.03)  (0.05) _ (0.04) _ (0.05)

. GV NPV Soil Shade B1 B2 B3 B4 B5 B7
Class Time (%) (%) (%) (%) %) %) ) R A (%) NDVI SAVI NDII5 NDII7
0 37 5 1 57 140 246 133 2610 1366 450  0.90 1.36 0.32 0.71
(5) @) @) (@) (1.9)  (05) (0.7) (21) (24) (15)  (0.04)  (0.06)  (0.07)  (0.07)
1 25 11 7 56 195 3.01 229 2438 1596 6.06  0.83 1.24 0.21 0.61
g 5 @) 3) 3) 3) (11)  (08) (14) (23) (34) (26) (0.10)  (0.15)  (0.12)  (0.14)
B 2 2 36 8 5 51 272 332 284 2336 17.73 7.41 0.78 1.17 0.14 0.52
23 @) @) @) 3) (05) (06) (0.9) (29) (27) (20) (008  (0.12)  (0.10)  (0.12)
S 3 51 8 2 40 188 283 1.82 2659 1641 591 0.87 1.30 0.24 0.63
(5) @) 1) @) (06) (04) (06) (35 (1) (1.0) (005  (0.07)  (0.07)  (0.07)
4 48 6 3 43 114 264 150 2862 1548 516  0.90 135 0.30 0.69
(5) ) (1) (5) (05 (06) (07) (33) (1.8) (0.7) _ (0.05) _ (0.07) _ (0.04) _ (0.04)
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Figure 3. Delta change of (a) reflectance, (b) vegetation and infrared
indices and (c¢) fraction images, computed by subtracting the mean value of
Intact Forest from the mean value of each degraded forest class.

c) Fraction Images

The GV fraction was not significantly different between Intact Forest and Non-
mechanized Logging and Managed Logging. These three classes, however, were
significantly different from Conventional Logging and Logged Burned (Figure 2c).
Conventional Logging and Logged Burned could also be separated from each other
with the GV fraction. The NPV; Soil and Shade fractions showed results similar to

the GV fraction, except that the Shade fraction showed a significant difference
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between Intact Forest and Non-mechanized Logging, and Soil showed a significant
difference between Intact Forest and Managed Logging (Table 4; Figure 2c).

The fraction images showed a higher absolute change between Intact Forest and
the forest degradation classes (Figures 2¢ and 3c), when compared to the changes
detected by the reflectance bands and the vegetation and infrared indices (Figure 2a-
b; Figure 3a-b). The GV fraction decreased non-linearly with degradation intensity
(Figure 3c). A significant change in mean of about 3% was observed between Intact
Forest and Conventional Logging class, and of 15% between Intact Forest and
Logged and Burned (Figure 3c; Table 4).

The Shade fraction changed less than 5% from Intact Forest to the most degraded
forest class — Logged and Burned. Changes in means and statistically significant
differences were observed in NPV for Conventional Logging and Logged and
Burned classes. The mean NPV fraction increased by about 5% between the Intact
Forest and the Conventional Logging classes, and between the Intact Forest and
Logged and Burned classes (Figures 3c; Table 4). The Soil fraction showed a similar
change, but smaller than the change exhibited by the NPV fraction. When NPV and
Soil are combined, the changes between Intact Forest and the degraded forest classes

become much greater (Figure 3c).

2.5.2 Multi-year Forest Degradation Separability

The temporal analyses covered the year prior to the degradation process (i.e.,
Intact Forest; Time=0) up to four years after the degradation process (Time=1,...,4).

Time represents the number of years after the last forest degradation event took
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place. Finally, the mean values, in Table 4 faced in bold indicate statistically
significant changes from the Intact Forest condition (Time=0) relative to any other

year (Time=1,..., 4) obtained with the Tukey test.

a) Reflectance and Indices

Two years after degradation, Non-mechanized Logging showed an increase in
mean reflectance in the visible and infrared regions, significantly different from the
Intact Forest mean reflectance (Table 4a). This increase in reflectance generated
changes in the vegetation and infrared indices in the second year, but only the
changes in means of NDVI and SAVI were statistically significant for Non-
mechanized Logging in the second year. No significant changes in reflectance and in
the indices were observed for the third and fourth years in Non-mechanized
Logging, except for band 4, which showed a significant increase (Table 4a).

Managed Logging showed only two significant temporal changes in mean
reflectance for bands 1 and 4, in the third and second years (Table 4b). Neither the
vegetation indices nor the infrared indices showed temporally significant changes in
mean values according to the Tukey test results for Managed Logging (Table 4b).

The Logging class showed some significant temporal changes in mean
reflectance and mean index values. Bands 2, 3, 5 and 7 showed significant
differences from Intact Forest two years after logging took place (Table 4c).
Significant differences were observed in bands 1 and 4, for three and four years after

logging, due to an increase in mean values that might be associated with forest
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regeneration. Finally, only the vegetation indices showed significant changes due to
logging disturbance for the fourth year (Table 4c).

Changes in Logged and Burned areas were significant for most of the reflectance
bands for all the years following the degradation process. Among the indices, only
the NDII5 index showed a significant difference between Intact Forest and Logged

and Burned in the fourth year (Table 4d).

b) Fraction Images

Non-mechanized Logging showed a significant increase in GV mean from the
Intact Forest mean in the second, third and fourth years after logging. A significant
decrease in NPV mean, relative to the Intact Forest mean, occurred in the third and
fourth years for this class. The Shade fraction showed a significant decrease in mean
in the second and fourth years (Table 4a).

Managed Logging showed a significant change between Intact Forest and Non-
mechanized Logging for the GV fraction in the second and fourth years. The results
indicate that no significant change in GV and Shade means occurred in the first year,
when the degradation took place. However, an increase in GV and a decrease in
Shade were observed in the second and third years, which is likely to be associated
with forest canopy closure after logging. The NPV fraction, however, did not show
any significant change between Intact Forest and Managed Logging for all the years.
Finally, Soil and Shade fractions were significantly different between these two

classes for all the years (Table 4b).
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The Conventional Logging class showed a significant difference in mean for GV,
NPV and Shade fractions for all the years. The Soil fraction was significantly
different from Intact Forest only in the first year (Table 4c).

The Logged and Burned class is affected by two degradation processes —
selective logging and burning. Because these are heavily degraded forest
environments, significant changes in all fractions were revealed with the Tukey test
(Table 4c). Mean GV fraction decreased after burning followed by an increase in GV
mean in the following years. The NPV mean showed an opposite pattern compared
to GV mean, with an increase in mean in the first year followed by a decrease in
NPV mean in the subsequent years. In the second year after burning, the Shade
fraction became important for distinguishing Intact Forest from Logged and Burned

forest due to a decrease in mean value (Table 4c).

2.5.3 Optimal Temporal Resolution

Non-Mechanized Logging is more difficult to distinguish from Intact Forest than
the other types of disturbances in the first year. GV and Shade fractions varied
inversely over time for this class (i.e., an increase in GV is followed by a decrease in
Shade; Figure 4a). Because this type of selective logging does not greatly impact the
forest in the year when the forest disturbance took place, the significant changes
observed might be associated with canopy closure after logging. Therefore, the
optimal temporal resolution for detecting this type of logging is between two to three
years, when canopy closure is more likely to happen, reducing canopy roughness

and, as a result, decreasing shade content. But, because this type of low impact
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logging does not build roads and log landings, its differentiation from other types of
disturbances (e.g., blow down winds) becomes much harder using the forest
regeneration signal.

Managed Logging is more likely to be detected with reflectance bands and
vegetation and infrared indices in the first year. The Soil fraction was the only SMA
result that showed significant change in the first year for this class. However, a
higher magnitude change in GV and shade fractions means were observed in
Managed Logging when compared with the changes observed in Non-mechanized
Logging (Figure 4a-b). Therefore, the regeneration of Managed forests is more likely
to be detected in the second and third years than the actual low disturbance in the
first year. In addition, the roads and log landing built in managed forests can be used
to differentiate Managed Logging from other types of forest disturbances. After the
fourth year no change relative to Intact Forest can be observed.

Conventional Logging and Logged and Burned areas can be detected in the first
year with all reflectance bands, indices and fractions. However, regeneration
changes in the Conventional Logging areas, in the subsequent years, are more likely
to be detected using fraction images. The Conventional Logging class can be
distinguished from Intact Forest in the first year because of a decrease in GV and an
increase in NPV (Figure 4c). After the second year, an increase in GV and decrease
in NPV is observed. However, the temporal time-series shows a second decrease in
GV and increase in NPV means in the third year (Figure 4c). Such a pattern may be
due to a second harvesting operation (recurrent logging), which is common in the

study area. The temporal fraction pattern of Logged and Burned areas shows a more
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dramatic decrease in GV and increase in NPV mean values in the first year after
degradation (Figure 4d). The NPV signal is still high in the second year and after the
third year GV increases and NPV decreases. Therefore, the optimal temporal
resolution for detecting disturbances in Conventional Logging and Logged and
Burned environments is one year; regeneration, however, can be detected in Logged
and Burned areas up to four years

The time-series results indicate that intensive and unplanned logging, and
logging followed by burning can be detected in the first year. Up to the second year,
detection becomes a challenge due to forest regeneration. Less intensive forest
impacts, such as those caused by non-mechanized logging and managed logging are
more difficult to detect even in the year after degradation took place. The
regeneration signal of these low intensity types of logging becomes significant in the
second and third years. But, the detection of logging infrastructure is important to

distinguish this low impact logging from other types of forest disturbance.

2.6 Discussion

2.6.1 Degraded Forest Mapping Potential

The fraction images derived from SMA have more advantages in differentiating
types of degraded forests than reflectance data and vegetation and infrared indices.

First, the fraction images showed higher absolute changes in
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mean values between Intact Forest and the other degraded forest classes than the
other types of data. Second, temporal changes were better revealed using fraction
images. Third, the fractions have a more intuitive physical link with field data.
Additionally, fraction images have been successfully used to map selective logged
and burned forest areas. For example, Cochrane and Souza Jr. (1998) reported that
the NPV fraction showed the greatest separability of sub-classes of burned forests
and Souza Jr. et al. (2003) demonstrated that the NPV fraction was an important
variable for differentiating Intact Forest from degraded forest in a decision tree
classifier. Finally, other studies have shown that damage associated with selective
logging is difficult to identify and map using Landsat reflectance data (Stone and
Lefebvre, 1998; Asner et al. 2002).

Fraction temporal changes revealed in the statistical comparisons described
above can be observed visually using a color composite of fraction images (Figure
5). When displaying NPV, GV and Soil as Blue, Green and Red, respectively, it is
possible to identify and potentially map degraded forest classes. NPV is the most
prominent fraction change in the degraded forest environment and is easily observed
in this type of color composite.

One important issue that should be taken into consideration when interpreting
forest degradation signatures in this type of color composite is the time of image
acquisition versus the time when degradation event took place. For example, the
Managed Logging areas of Transects 15 and 17, do not exhibit an NPV signature in

1999, because no selective logging had taken place in that year (Figure 5a). In the
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following year, only Transect 15 showed an increase in NPV due to selective
logging, but no increase in NPV was observed in Transect 17 (Figure 5b). To
explain why this is possible one must consider the time of both harvesting and image
acquisition. The Landsat image for the year 2000 was acquired immediately after
harvesting took place in the area of Transect 15, but before harvesting occurred near
Transect 17 (Figure 5b). In the next image, acquired in 2001, the NPV signal in
Transect 15 area is no longer as visible, but the NPV content has increased in
Transect 17 relative to the images acquired in 1999 and 2000. This type of temporal
lag between image acquisition and harvesting is important for building change
detection classifiers for mapping degraded forest.

The NPV fraction signature was more visible and persistent in Logged and
Burned environments (Figure 5e-h). In the area of Transects 3, 4 and 5, selective
logging took place in 1999 followed by intensive forest burning in 2000. NPV
increased more drastically in burned areas and its signature was still visible in 2001.
In 2002, the NPV signature disappeared, followed by an increase in GV and

decrease in Shade.

2.6.2 Linking Field Measurements with Fraction Images

Forest biophysical properties acquired with the forest transect for Intact Forest
and the degraded forest classes are summarized in Table 5. The results obtained with
the SMA agree with the field measurements. GV fraction tends to decrease as a
function of degradation intensity. At the field scale this change in GV can be

explained by a decrease in the amount of intact vegetation and canopy cover.
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Figure 5. Examples of forest degradation processes and temporal changes as
detected using fraction images derived from SMA (Red = Soil, Green = Green
Vegetation, Blue = NPV).
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The field results show that the mean of intact vegetation proportion drops from 95%
in the Intact Forest to 50% in Logged and Burned areas (Figure 2c; Table 5). The
canopy cover also decreased from Intact Forest (93%) to Logged and Burned (67%).

The proportion of forest area affected by disturbed soil and wood debris
increases as a function of the degradation intensity. This pattern also agrees with the
pattern captured by Soil and NPV fractions (Figure 2c; Table 5). At the field level all
these ground disturbances are significant for differentiating Intact Forest from the
degradation classes. However, because the ground cover is not always imaged by
satellite sensors, the distinction of these classes from Landsat is not always possible
using these field properties.

NPV fraction has an inverse relationship with biomass measurements made in
degraded forests in the Eastern Amazon (Souza et al., 2003). In the study area, the
biomass estimates obtained with the field transects also show a trend in decreasing
biomass with an increase in NPV as a function of degradation intensity (Figure 2c;
Table 5). Even though it is not the objective of this paper to evaluate if these
correlations are statistically significant, the results indicate that there is a potential
for using the NPV fraction images to estimate biophysical properties of degraded

forests in open forest environments as well.

2.6.3 Monitoring Forest Degradation: practical application and

challenges

One potential application of the fraction change detection technique is the

discrimination between managed and unplanned logging. Currently, there is an

41



increasing need to monitor areas under forest management in the Amazon region.
First, the Brazilian government has improved the control of selective logging in the
region by requesting detailed information on the location of forest plots that will be
subject to timber harvesting and requiring specific management practices following
logging (Casa Civil, 2004). Second, the logging private sector has become more
interested in forest certification, which requires high standard management practices
(Lentini et al., 2003). Finally, the Brazilian government has been evaluating the
possibility of providing long-term concessions in National Forest areas for logging
companies interested in timber harvesting (Verissimo et al., 2002). Therefore, low
cost, timely and reliable information on forest disturbances is required to monitor the
forest areas authorized by the government and/or certified for conducting forest
management.

The fraction change technique presented in this chapter has the potential to be
used to indicate if an area is following the management practices required by the
Brazilian government and/or by the certification institutes. For example, both the
GV and NPV fractions showed significant differences from Intact Forest to Managed
Logging, but showed higher significant differences and more pixels showed changes
in fraction values from Intact Forest to Conventional Logging and Logged and
Burned areas. In other words, the fraction change technique has the potential for
differentiating managed logging areas from unplanned logging areas. Therefore, a
forest monitoring program could use the fraction change technique to verify if the

areas that have received government authorization and/or forest certification to
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manage forest areas for timber harvesting are following the management
prescriptions.

There are, however, two main challenges to implementing a remote sensing
program for monitoring forest management plans in the Amazon region. The first
has to do with technical remote sensing issues. Reflectance retrieval, radiometric
inter-calibration and SMA, particularly dealing with the need to find the correct set
of endmembers, are not trivial tasks. Second, processing and interpreting the fraction
data requires training the end-users who will be in charge of such a forest monitoring

system.

2.7 Conclusion

Statistical multi-temporal analysis of reflectance, vegetation and infrared indices
and fraction images, derived from SMA, showed that fraction images are more
sensitive to changes in transitional forest environments due to selective logging and
burning than the broad-band indices tested here. Low intensity logging, such as
Managed Logging and Non-mechanized Logging are more difficult to distinguish
from Intact Forest but a regeneration signal - caused by understory vegetation growth
and canopy closure -becomes significant in the second and third year due an increase
in GV and decrease in Shade. The time-series results showed that changes in GV and
NPV fractions were higher when Intact Forest was changed to Conventional Logging
and to Logged and Burned environments in the first year following the degradation

event. In the Logged and Burned Forests, the NPV signal was more persistent,
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showing a burned signature through the second year after forest burning. Therefore,
both GV and NPV can be used in change-detection classifiers for identifying and
mapping Conventional Logging and Logged and Burned forests in the Brazilian

Amazon, with images no more than one year apart.
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Table 5. Biophysical properties of the Intact Forest class and of the degraded forest classes estimated from the

forest inventories.

Non- Logged and
Biophysical Intact Forest mechanized Managed Conventional
_ . . _ . _ Burned
property (n=4) Logging Logging (n=5)  Logging (n=2) (n=3)
(n=5)
Ground cover (%)

Intact vegetation 95 (5) 83 (9) 50 (11) 59 (3) 50 (19)
Woody debris 4(5) 10 (11) 29 (7) 17 (8) 39 (28)
Disturbed soil 0 7(2) 17 (6) 24 (12) 5(7)

Canopy cover (%) 93 (5) 87 (4) 97 (1) 92 (0) 67 (5)
Aboveground live
biomass (t ha-1) 306 (44) 250 (20) 219 (31) 277 (44) 166 (45)

"Means presented with S.D. noted parenthetically.



CHAPTER Illl: Combining Spectral and Spatial Information to
Map Canopy Damages from Selective Logging and Forest

Fires?

3.1 Introduction

Remote sensing techniques for mapping forest degradation caused by selective
logging and the forest fires are critically needed in the Brazilian Amazon. In these
regions, ongoing deforestation has fragmented remaining forests and exposed the
remnants to increasing levels of timber extraction and an alarming frequency of
uncharacteristic forest fires (Cochrane, 2003). Several techniques for mapping
selectively logged or burned areas have been proposed, but none has proven
satisfactory as a general tool for detecting the type and severity of forest degradation.
Visual interpretation of Landsat Thematic Mapper (TM) images was the first
technique proposed to map selective logging (Watrin and Rocha,1992); it provided
some of the first remote sensing based estimates of the area affected by selective
logging in the Brazilian Amazon (Santos et al., 2002; Matricardi et al., 2001). Visual
interpretation is possible when logging ‘scars’ are visible on the images. However,
these logging “scars” only persist for one to two years after logging (Souza Jr. et al.,
in press a). Furthermore, visual interpretation is challenging when the logging

intensity is low as is the case, for example, with mahogany harvesting (Verissimo et

2 Accepted for publication: Souza Jr. et al., (in press b).
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al., 1995) or non-mechanized logging. Finally, visual interpretation is time

consuming and can have a human bias.

Conventional digital image processing techniques such as minimum distance and
maximum likelihood classifiers have also been evaluated for mapping selective
logging in the Amazon (Stone and Lefebvre, 1998) as have texture and reflectance
analyses (Asner, et al. 2002). These techniques are prone to error due to the spectral
ambiguity between selectively logged areas of various ages and extraction intensities

and intact forest.

SMA overcomes some of the problems of visual interpretation and conventional
image processing techniques. The soil fraction derived from SMA enhances the
detection of the log landings and logging roads, which have been recognized as the
spatial signature of mechanized logging in tropical forests (Souza Jr. and Barreto,
2000; De Wasseige and Defourny, 2004). The total forest area affected by selective
logging, which integrates the clear-cut forest to build roads and log landings, forest
island that were not harvested and canopy damaged forest (Souza Jr. and Roberts,
2005), can be estimated from log landings using an estimated tree harvesting radius
(Souza Jr. and Barreto, 2000; Monteiro et al., 2003). If forest damage data are
available, this area mapping technique can be used to estimate the impact of selective
logging on the forest. However, this approach does not provide spatial information
about the location of the forest canopy damages. To overcome this limitation, Asner
et al. (2002) proposed using gap fraction data derived from Green Vegetation (GV)

fraction images obtained with SMA as a means to estimate forest canopy damage
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associated with selective logging. The gap fraction approach cannot separate selective
logging gaps from canopy gaps generated by natural forest disturbances (e.g.
treefalls, windthrows, lightning strikes), and is likely to overestimate the area affected
by selective logging in the Amazon region. Finally, the non-photosynthetic vegetation
(NPV) (Roberts et al., 1993) fraction has been used to quantify levels of forest
degradation caused by burning (Cochrane and Souza Jr., 1998).

The Soil, GV and NPV fractions have been used independently, underutilizing
the information provided by SMA models. Decision tree classification was proposed
to integrate the fractions of GV, Soil and NPV to classify degraded forest
environments due to selective logging and burning (Souza Jr. et al., 2003). However,
this approach is only useful for mapping highly degraded forests which have been
subject to recurrent logging and burning.

In this study, I present a robust technique to map canopy damage caused by
selective logging and burning that overcomes the problems described above. First, a
novel spectral index is proposed to enhance the identification and detection of forest
degradation that combines GV, NPV, Shade and Soil fractions derived with SMA.
Second, a contextual classification algorithm (CCA) integrates the spatial
information of log landings and roads with the proposed fraction index images to
unambiguously separate canopy damage due to selective logging and associated
burning from canopy damages due to natural disturbance. Fires are not considered
natural disturbances in this study due to the extreme rarity of such fires in these

forests (Cochrane, 2003). Forest fires are becoming increasingly common in
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fragmented and logged forests, however, the spatial distribution of these fires
(Cochrane, 2001) and association with human land use (Cochrane et al., 1999;

Cochrane et al., 2004) clearly indicate their anthropogenic origins.

3.2 Study Area

The proposed techniques were tested in the vicinity of Sinop County, located in
the state of Mato Grosso, Brazil (Figure 1). Transitional forest, between ‘cerrado’
and dense forest, is the predominant vegetation type in the study region. These
transitional forests are characterized by 93% canopy cover, a tree density of 422
trees ha™', and a total aboveground live biomass of 326 tons ha™ (Monteiro et al.,
2004). The diversity and density of timber species in these transitional forests are
smaller than in dense forests. The topography varies from flat to undulating terrain,
on Latosol soils. The average annual precipitation is 2,000 mm (RADAMBRASIL,
1981).

Selective logging in this area is characterized by the selective harvesting of only
high quality timber species. The harvesting intensity ranges from 10 to 40 m*/ha and
conventional logging operations are predominantly unplanned in terms of forest
management (Monteiro et al., 2004). Four types of selectively logged forest were
identified in the field: Non-mechanized Logging, Managed Logging, Conventional
Logging and Logged and Burned (Table 1). Selectively logged forests are a complex
mosaic of three environment types: 1) undisturbed forest islands that were not

affected by logging operations, often due to difficult access resulting from

49



topography and rivers, or because of a lack of commercial timber species; ii) cleared
forest for logging roads and trails used for machine movements (skidders and trucks)
and log landings used to temporarily store the harvested timber; and iii) forests with
canopies damaged by tree-felling and extraction during logging operations. Forest
fires are frequent in the study region and are strongly associated with prior selective
logging (Cochrane et al. 2004). The synergism between selective logging and forest
fires increases the extent and severity of forest burning and results in extensive forest
degradation (Cochrane et al., 1999; Monteiro et al., 2004). Detection and mapping of
selectively logged and burned forests in the resulting forest mosaic is difficult and
further complicated by the rapid canopy closure and undergrowth that occur after

logging or burning.

3.3 Data Set

3.3.1 Forest transect inventory

Nineteen 0.5 ha forest transect inventories, conducted in September 2001 (n=14)
and August 2004 (n=5), were used to characterize the different classes of degraded
forests found in the study areas (Figures 1 and 6). Additionally, information about
logging and fire histories, ground cover, canopy cover and biomass were used to test
the sensitivity of the proposed fraction-based index for distinguishing the forest
degradation classes, Non-mechanized Logging, Managed Logging, Conventional

Logging and Logged and Burned (Table 1).
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Figure 6. Map of the study area showing the location of the forest transects and of the aerial videography transects.



Table 3 lists the year that forest degradation took place and the disturbance
history of the forest transects conducted in the study area. The forest inventories
were conducted following the field protocol proposed by Gerwing (2002) to
characterize degraded forest in the eastern Amazon. This method has successfully
been applied to characterize biophysical properties and dynamics of degraded forests
in transitional forests (Monteiro et al., 2004) like those in the study region. The
forest inventory procedure required measuring all trees with Diameter at the Breast
Height (DBH) greater than 10 cm along a 10 m by 500 m transect. Ten sub-parcels
(10 m x 10 m) were established every 50 meters along each transect where all trees
were mapped and ground cover and canopy cover fractions were estimated. Above
ground biomass estimates were made using allometric equations available in the
literature (Gerwing, 2002). The biophysical information extracted from the transect

inventories are summarized in Table 5.

3.3.2 Satellite Imagery Data

Landsat TM 5 and Landsat Enhanced Thematic Mapper (ETM+) images, bands
1-5 and 7, acquired between 1984 and 2004 were used in this study (Table 2). The
images were acquired through the Tropical Rain Forest Institute Center (TRFIC) and

the Brazilian Space Agency (INPE).
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3.4 Methodology

3.4.1 Image Processing

a) Image Registration and Radiometric Calibration

The Landsat ETM+ image acquired in 1999 in Sinop (226/68) was georeferenced

using several control points extracted from NASA GeoCover 2000 Mosaic

(https://zulu.ssc.nasa.gov/mrsid/). Next, the georectified Landsat image was used as
the reference image to register the images acquired for the other dates (Table 2). The
registration utilized a polynomial algorithm and nearest neighborhood interpolation,
available in the Environment for Visualizing Images — ENVI - 4.0 software (ENVI;
Research Systems, Boulder, CO). A minimum of 14 image control points were used

and the maximum root-mean-square error allowed was 1 pixel.

b) Atmospheric correction and Inter-calibration

The reference image was converted from encoded digital number (DN) to
reflectance. To perform this task, the reference image was converted to radiance
using the gains and offset provided in the image metafile. Next, atmospheric
correction was performed using Atmospheric Correction Now 4.0
(ACORN:Analytical Imaging & Geophysics, Boulder, CO). Visibility and water
vapor parameters of the atmospheric correction model were determined by a trial-

and-error sensitivity analysis of a dark object reflectance (a lake). The final
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parameters were estimated when the expected reflectance values of the dark object
were found. The fixed water vapor for Sinop was 40 millimeters, and the image
atmosphere visibility was 25 km.

The other images (Table 2) were inter-calibrated to the reflectance image using a
relative radiometric calibration approach (Roberts et al., 1998; Furby & Campbell,
2001), regressing encoded radiance against reflectance in the reference image. This
technique assumes uniform atmosphere over the image scene, and that invariant
ground targets can be found in the reference and the uncalibrated images. To account
for spatially variable atmospheric contamination due to haze and smoke, the Carlotto
(1999) technique was applied to those images that had significant contamination
prior to relative radiometric calibration. The Carlotto technique is based on the
assumption that smoke and haze only adversely impact the visible bands, leaving the
NIR and short-wave Infrared bands unchanged. Statistics are calculated for the entire
image, in which average values for TM bands 1, 2 and 3 are calculated for each
unique combination of TM bands 4, 5 and 7. After calculating these statistics, the
original values for TM bands 1, 2 and 3 for a specific combination of bands 4 to 7
are then replaced with the scene averages for that combination. This approach,
developed by Carlotto (1999) has the effect of homogenizing contamination
throughout a scene — thus clear sky portions of the image gain a slight amount of
contamination, while contamination is significantly reduced in areas under smoke or

haze.
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Typical invariant targets used included intact forest, second growth, green
pasture, bare soil and water. Second growth and green pasture were only used as
invariant targets for images that were no more than two years apart from the
reference image date. The slopes and intercepts for the relative radiometric inter-
calibration were obtained from a linear regression that was estimated using the pixel
mean values, extracted from a 3 by 3 pixel area, of the invariant targets for each
band. These coefficients normalize the uncalibrated images to the reference images,

converting Digital Numbers of the uncalibrated images to reflectance.

3.4.2 Spectral Mixture Analysis - SMA

The Landsat TM/ETM+ reflectance data of each pixel were decomposed into
fractions of GV (green vegetation), non-photosynthetic vegetation (NPV), Soil and
Shade through Spectral Mixture Analysis — SMA. (Adams et al., 1993). The SMA
model assumes that the image spectra are formed by a linear combination of #n pure

spectra, such that:
R,=> FiR, +g, (8)

for

o3|
Il
—_

©)

i=1

where Rb is the reflectance in band b, Ri b is the reflectance for endmember i, in band

b, F, the fraction of endmember 1, and ¢, is the residual error for each band. The
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SMA model error is estimated for each image pixel by computing the RMS error,

given by:
RMS= [n") 1" (10)
b=

The identification of the nature and number of pure spectra (i.e., endmembers),
in the image scene is imperative for a successful application of SMA models. Four
mixed endmembers are expected in degraded forest environments, GV, NPV, Soil
and Shade. Image endmembers representing GV, NPV and Soil were extracted from
the reference reflectance image. Shade was assigned zero percent reflectance at all
wavelengths. The pixel-purity-index (PPI), available in ENVI 4.0 (Boardman et al.,
1995) was used to identify image endmember candidates. Five image subsets
(500x500 pixels), representing the variety of land cover types found in the images,
were used as inputs for the PPI algorithm. The PPI result was used to identify the
pixel location in the original image and extract the spectral curves of these pixels.
The final image endmembers were selected based on the pixel location in the
Landsat reflectance spectra with the aid of an n-dimensional visualization tool
available in ENVI. The pixels located at the extremes of the data cloud of the
Landsat spectral space were selected as candidate endmembers. The final
endmembers were selected based on the spectral shape and image context (e.g., soil
spectra are mostly associated with unpaved roads and NPV with pasture having

senesced vegetation).
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SMA models were computed for each date using the inter-calibrated image
endmembers, except the reference image, which was the one used to extract the
endmembers. The SMA model results were evaluated as proposed by Adams et al.
(1993). First, the RMS images were inspected and models with RMS values greater
than 5% were discarded from the fraction change analysis. Next, fraction images
were evaluated and interpreted in terms of field context and spatial distribution.
Finally, the histograms of the fraction images were inspected to quantify the
percentage of pixels lying outside the range of zero to 100% and to evaluate fraction
value consistency over time (i.e., that intact forest values were similar over time).
Only models with at least 98% of the values within zero to 100% and those that
showed mean fraction value consistency over time were kept. For the models that
did not pass one of these tests, new invariant targets were collected to improve the
image inter-calibration coefficients and new SMA models were run until the

criterion was met.

3.4.3 Normalized Difference Fraction Index — NDFI

Selectively logged forests and burned forests have a lower proportion of GV and
a higher proportion of NPV and Soil relative to intact forest (Souza Jr et al., in press;
Souza Jr. et al., 2003; Cochrane and Souza Jr., 1998). The shade content of these
degraded forests is also higher relative to intact forest (Souza Jr. et al., in press). In
order to enhance the degradation signal caused by selective logging and burning, a
Normalized Difference Fraction Index (NDFI) is proposed, computed using the

fraction images obtained with SMA models by:
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GVy,.,. — (NPV + Soil)

NDFI = ; (11)
GVg,,0. + NPV +Soil

where GVipaqe 18 the shade-normalized GV fraction given by,

GV
GV,  =— " 12
Shade 100 — Shade (12)

The NDFI values range from -1 to 1. Theoretically, the NDFI value in intact
forest is expected to be high (i.e., about 1) due to the combination of high GVhage
(i.e., high GV and canopy Shade) and low NPV and Soil values. As the forest
becomes degraded, the NPV and Soil fractions are expected to increase, lowering the
NDFI values relative to intact forest. Therefore, the NDFI has the potential to
enhance the detection of forest degradation caused by selective logging and burning.
The NDFI has the advantage of combining, in one synthetic band, all the information
that has been shown to be relevant for identifying and mapping degraded forests in

the Amazon region.

3.4.4 Statistical Analysis

Based on the information on logging and fire histories, it was possible to identify
the date of the forest degradation events (Table 3). The Landsat image corresponding
to the forest degradation events for each transect were selected for analysis. For
example, for transect 8, which was logged in 1993, the 1993 image would have been
selected. Next, the geographic coordinate of the transects were used to locate the
degraded forests areas in the images. Fractions of GV, NPV, Shade and Soil were

extracted using 30 pixels selected randomly within the degraded area where transects
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were conducted. The NDFI value of the randomly selected pixels was also computed
for each transect using the fraction values extracted according to Equations 11 and
12.

The final step was to perform a pair-wise class separability analyses based on the
fractions and NDFI variables. The Tukey test (Ott, 1992), available in the R

Language (http://www.r-project.org/) was used to evaluate if the Intact Forest and

the forest degradation classes could be separated from each other at a 99%
confidence interval (P < 0.01). The Tukey test performs a multicomparison by
testing the mean of a population against the mean of each other population. Because
the Tukey test requires normally distributed samples, a data transformation was
applied when necessary by computing the arcsine of the square-root of the data

variable (Hogg and Graig, 1994) prior to statistical analysis.

3.4.5 Contextual Classification Algorithm

The log landing locations extracted from the Soil fraction image were used as
contextual information to map forest canopy damage associated with selective
logging and forest burning. Because log landings are the spatial signature of selective
logging (Souza Jr. and Barreto, 2000; De Wasseige and Defourny, 2004) and burned
forests are associated with selective logging (Cochrane et al., 2004), this approach
allows us to separate selective logging and forest fires from forest natural disturbance
(e.g., blow downs and drought-deciduous trees) in tropical forests. Natural
disturbances in the Brazilian Amazon affect mostly the forest canopy and soil is not

exposed because the ground is covered by damaged vegetation (Nelson et al., 1994).
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In order to separate canopy damages caused by selective logging and associated
forest burning from other types of canopy disturbance, a contextual classification
algorithm (CCA) was developed. The CCA integrates log landing and logging roads
extracted from soil fraction images with the NDFI image. Log landings exhibit
higher Soil fraction values than intact forest and their detection and extraction can be
automated (Souza and Barreto, 2000; Monteiro et al., 2003). Logging roads show
high soil values and have a linear shape. An image thresholding technique was
applied to extract log landings and logging roads from the Soil fraction images. All
pixels with a Soil fraction greater than 10% were extracted and used as inputs for a
region labeling program available in IDL (Interactive Data Language, Research
System, Boulder, CO). Next, all regions found in the region-labeled image were
indexed and the area and shape of each indexed-region were calculated. Regions
with area varying from one to four pixels in size were classified as log landings
based on field measurements of log landings. The log landing average area for this
region measured at the field scale is 1,043 m? (n=34) with a minimum and maximum
of 348 m? 4,051 m?, respectively (Monteiro et al., 2003; Monteiro, 2005). These
areas translate to a minimum of 40% of a pixel (18x18 m), an average of slightly
more than a pixel and a maximum of 4.5 pixels. Assuming a worst case scenario of a
small log landing falling between four pixels, this translates to a minimum Soil
threshold of 10% and areas ranging from 1 to 4 pixels. Therefore, the area and
fraction threshold used to extract the log landings from the Landsat images is within

the range of log landings measured in the field. Finally, a forest mask was applied to
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avoid confusing log landings with other small cleared areas found in deforested
areas (Souza Jr. and Barreto, 2000; Monteiro et al., 2003).

A 2D-search program, also available in IDL, was used to look for a specific
range of values in the NDFI images associated with canopy damages due to selective
logging and burning. First, the log landing extracted from the Soil fractions were
used as the starting locations to search within the NDFI image for values ranging
from 0 to 0.75 which represents the NDFI values associated with canopy damage.
This range of NDFI values was defined empirically using the canopy damage data
collected during the forest inventories (Figures 1 and 6, Table 3) and is associated
NDFI values. Given the pixel location of a log landing region, the IDL 2D-search
program extracts the NDFI value of each neighboring forested pixel adjacent to the
selected log landing. If the NDFI value of the selected neighboring pixel is within
the specified NDFI threshold range (i.e., between 0 and 0.75), the pixel is classified
as Canopy Damage. Otherwise, the pixel is classified as Intact Forest. Next, each
pixel classified as Canopy Damage provides new locations to search for new
neighboring pixels and to test if their NDFI values are within the canopy damage
range. The new neighboring pixels are classified as Canopy Damage or Intact Forest
based on the criteria described above. This process grows canopy damage regions
from the log landings until all neighboring pixels are classified as Intact Forest.
Then, the algorithm jumps to the next log landing location that had not been
included within a Canopy Damage region. The Canopy Damage classification is

completed when all log landing locations are evaluated as described above. The
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NDFI image was smoothed, prior to the application of the 2d-search program, using

a 3 x 3 pixel kernel, to remove image classification speckle.

3.4.6 Accuracy Assessment

The canopy damage map generated with the contextual classifier was assessed
with aerial videography images acquired in December 14 and 17 of 2000. The
videography system consisted of a SONY DCR-VX1000 digital camera, a Magelan
NAVS5000 GPS and of a HORITA GPS3 time code generator. Image mosaics of 1
meter spatial resolution were generated to build five videography transects, covering
a region of 168 km by 0.64 km (Figures 6). An example of an aerial videography

mosaic is given in Figure 7.

........ Flight line

Selective logging

Figure 7. Example of aerial videography moisaic used as reference data for
the map accuracy assessment
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The videography mosaics were georeferenced using the GPS data collected
during the image acquisition. The pixel location accuracy of the videography mosaic
was 15 m after geoferencing, which guaranteed accurate registration with the
Landsat images.

The accuracy assessment protocol included defining a sampling design, a
response design, and evaluating the canopy damage map using the reference data
(Powell et al., 2004). The sample design used a block sample of 5 by 5 Landsat
pixels. A total of 80 block samples (i.e., 2000 pixels) were randomly selected from
the Landsat, located on the videography and interpreted by an independent image
interpreter. The response design used the forest and soil cover proportions and the
shadow proportion within the block sample as the criteria for labeling each block
sample as Intact Forest, Canopy Damage or Deforestation. The block sample was
classified based on cover fractions observed in the videography as follows:

e Intact Forest: > 70% of forest canopy and < 30% of shade, 0% of soil;

e Canopy damage: 30-70% of forest canopy, 10-40 % soil plus NPV, and >
50% of shade;

e Deforestation: <30% of forest and >40% of soil plus NPV, and < 50% of
shade

These classification threshold values were defined based on visual interpretation
of the videography images. It is important to highlight that the shade content
observed in the videography images does not correspond to the amount of shade

estimated with SMA for the Landsat images pixels. The shade fraction in a Landsat
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scene is a product of two components, reduced reflected radiance due to local
illumination (ie, leaf angles, shaded crowns) and shadows. In contrast, the shade
fraction derived from videography is strictly a measure of shadows. As a result, the
two measures of “shade” will differ, with videography derived estimates typically
lower. In addition, the videography was flown closer to solar noon in December,
when the solar zenith is lowest in the southern hemisphere. In contrast, the Landsat
data were acquired earlier in the day in June, at a higher solar zenith and thus would
be expected to have a higher amount of shadowing. To account for the fact that the
videography and Landsat data were acquired six months apart (December 14-17,
compared to June 26, 2000 for Landsat), pixels that were subject to land cover
changes in the videography reference data were removed from the accuracy
assessment (5 blocks or 125 Landsat pixels) prior to calculation of the classification
error matrix (Powell et al., 2004). Geocorrection errors of the block sample pixels
were also corrected when necessary using land features such as roads, rivers and

forest edges.

3.5 Results

3.5.1 Class Separability

Table 6 shows fractions and NDFI statistics for the Intact Forest, Non-
mechanized Logging, Managed Logging, Conventional Logging and Logged and
Burned, for the areas where the forest transects were conducted. The results of the

pair-wise comparison of these classes using the Tukey test (P<0.01) is represented
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by superscript letters shown in the means of GV, NPV, Soil, Shade and NDFI (Table
6). Means with the same superscript letters showed no significant statistical
differences, whereas different superscript letters indicates the opposite. For example,
no significant changes in the GV means of Intact Forest (40%, symbol a), Non-
Mechanized Logging (41%; symbol a) and Managed Logging (41%; symbol a) were
observed among each pair of these classes (Table 6). But, when the pair-wise
comparison was performed using the Tukey test between Intact Forest (40%, symbol
a), Conventional Logging (38%, symbol b) and Logged and Burned (25%, symbol c)
classes, significant changes in the means of the GV fraction were observed for all
possible pairs among these classes (Table 6). This also implies that Conventional
Logging (b) and Logged and Burned (c) can be separated from Non-mechanized
Logging (a) and Managed Logging (a); and that Conventional Logging (b) can also
be distinguished from Logged and Burned (c) (Table 6).

NPV and Soil, on the other hand, showed a pattern of increasing mean values
from Intact Forest to the most degraded forest class (Table 6). The statistical analysis
showed that NPV means of Intact Forest (a), Non-mechanized Logging (a) and
Managed Logging (a) are not significantly different from among each other. The
NPV means of Conventional Logging (b) and Logged and Burned (b) are also not
significantly different from each other. However, Conventional Logging (c) and
Logged and Burned (d) showed mean values significantly different from the mean
values of Intact Forest (a), Non-mechanized Logging (a) and Managed Logging (a)

(Table 6). The Soil fraction showed a similar result as the NPV fraction, except the
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Managed Logging (b) and Conventional Logging (b) did not have significantly
different means (Table 6).

The mean Shade fraction was slightly higher in Logged and Burned forest (56%)
relative to the Intact Forest class (51%). No statistically significant change was
observed among each pair of the Intact Forest (a), Non-mechanized Logging (a) and
Managed Logging (a) classes (Table 6) using Shade fractions. Significant statistical
changes in mean values were observed between Conventional Logging (c) and
Logged and Burned (d), and between these two classes and the other classes (i..e,
Intact Forest (a), Non-mechanized Logging (a), Managed Logging (a). Managed
Logging (b) and Conventional Logging (b) did not show significant change in their
means (Table 6).

These statistical results show that GV, NPV and Soil fractions are each sensitive
to forest degradation to a certain degree. However, the NDFI which synthesizes all
of these data showed more pronounced changes in mean values as a function of
forest degradation intensity than the changes in the mean values of any of the
individual fraction images. The pair-wise statistical analysis showed that NDFI
cannot separate Intact Forest (a) from Non-mechanized Logging (a). But, all other
classes [i.e., Managed Logging (b), Conventional Logging (c) and Logged and
Burned (d)] showed significant statistical changes in means among each other and

against Intact Forest (a) and Non-mechanized Logging (a) (Table 6).
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Table 6. Means and standard deviations for Intact Forest and the forest degradation classes. Different superscript
letters represent significant statistical difference among classes using the Tukey test at P<(.01. For example, Intact
Forest and Non-mechanized Logging showed the same letter (a) meaning that their means are not significantly
different using NDFI, whereas Managed Logging (b), Conventional Logging (¢) and Logged and Burned showed
different letters meaning that there are significant statistical differences among them.

Class Intact Non]Ij:)egcghii;ized Managed Logging CoEzglglglognal L()éﬁsﬂez:lnd

Mean o on MM Deion M piion  Mem  pen  Mem  Soeton
GV 40* 4 41* 5 41* 5 38" 9 25¢ 7
NPV 6" 2 5* 2 6" 2 10 4 11" 3
Soil 2° 1 1* 1 3 1 4" 3 7¢ 3
Shade 51* 3 53* 5 51 4 49" 3 564 3
NDFI 0.84* 0.08 0.87" 0.07 0.79" 0.07 0.58¢ 0.24 0.49° 0.22




The changes in mean values from Intact Forest to degraded forest classes can be
better visualized in the delta change graph shown in Figure 8. This delta change
graph is calculated by subtracting the mean value of Intact Forest from the mean
value of each degraded forest class.

The GV fraction decreased non-linearly with degradation intensity. The most
drastic changes in GV mean were observed between Intact Forest and Logged and
Burned Forests (15%; Figure 8). The Shade fraction changed less than 5% from
Intact Forest to the most degraded forest class — Logged and Burned. The mean NPV
fraction increased by about 5% between the Intact Forest and both the Conventional
Logging and Logged and Burned classes. The Soil fraction showed smaller increases

in mean values than the change in mean exhibited by the NPV fraction (Figure 9).
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Figure 8. Delta changes of fractions and NDFI, calculated by subtracting the
mean value of Intact Forest from the mean value of each degraded forest class.
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The percent change of NDFI was also computed to facilitate the comparison of
its performance to detect forest degradation changes relative the percent changes
obtained with the fraction images. The NDFI images showed a higher percent
change between Intact Forest and the forest degradation classes, when compared to
the changes detected by any of the individual fraction image (Figure 8). This higher
magnitude change is due to the fact that the NDFI includes all changes detected by
each individual fraction in one single band. Therefore, the identification of canopy
damages due to selective logging and forest burning is enhanced by the NDFI
making this information useful for image classification purposes. The most
pronounced enhancement can be seen in the potential for discriminating the
Conventional Logging class, which typifies most logging activities in the region.
None of the individual fractions showed a mean change of greater than 5% but the

corresponding NDFI mean values were close to 15% different (Figure 8).

3.5.2 Forest Canopy Damage Detection

Figure 9 shows the region where transects 3, 4 and 5 were conducted, which was
selectively logged in 1998 and 1999, severely burned in 2000, then allowed to
regenerate over the next three years. Dark green colors in Figure 9 represent forest
areas that were not subject to canopy damage due to selective logging and/or burning
and as result have high NDFI values (>0.75). Orange to yellow colors are associated
with forest canopy damage (0 < NDFI < 0.75) due to selective logging and forest

burnings. Areas with negative NDFI values show up in the NDFI images in magenta
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and white colors and are mostly associated with areas that were subject to clear-
cutting (Figure 9).

The first selective logging event in this area happened in 1998 (Figure 9a). It is
possible to observe log landings and infer the location and shape of the primary
logging roads connecting the log landings. Forest canopy damage is identified as
light green pixels with NDFI < 0.75 as indicated by the arrow in Figure 9a. Because
the timber harvesting had not been completed until the image acquisition date, it is
still possible to observe Intact Forest (NDFI > (0.75) areas among the log landings
and logging roads in the southern part of the selectively logged area in 1998.

The NDFI values of the selectively logged forest in 1998 increased in the 1999
image — old logged in Figure 9b — but a canopy damage signal (i.e., NDFI < 0.75) of
selective logging appeared right beside the area logged in 1998. In 2000, this logged
forest area was subject to a severe fire event, burning approximately 5,000 hectares
(Figure 9c). The NDFI values of this Logged and Burned forest are smaller than the
NDFI values found in the conventionally logged forests in the previous years due to
more drastic canopy damage and a higher concentration of exposed NPV and Soil
(Figure 9a-b). Areas that completely lost forest canopy due to fire show up as
negative NDFI values (Figure 9c¢). In the year following burning, the forest canopy
damages can still be detected with the NDFI image (Figure 9d). In the second year
after burning, the canopy damages are no longer visible with only log landings
showing up (Figure 9e). Finally, in the third year the NDFI values returned to those

found in intact forest (Figure 9f).
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Figure 9. Examples of forest degradation processes and temporal
changes as detected the NDFI band.
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NDFTI and individual Fraction statistics were calculated for intact forest, canopy
gaps, log landings and burned areas found in the Logged and Burned forest showed
in Figure 10. Mean NPV, Soil and Shade fractions increased in log landings, canopy
gaps and burned forest areas relative to intact forest areas (Figure 10). On the
other hand, GV was the only fraction that exhibited a decrease in canopy gaps, log
landings and burned areas relative to intact forest areas. The NDFI means for these
environments changed more drastically than the changes detected by any of the
individual fractions. The NDFI mean in intact forest was 0.84, dropping to 0.73, 0.26
and 0.17 in canopy gaps, respectively (Figure 10). Therefore, NDFI has a greater
potential for sub-classifying these types of degraded forest than individual fraction

images values.
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Figure 10. Fractions and NDFI means and standard deviation (vertical
error bar) of the main environments found in degraded forests areas.
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3.5.3 Canopy Damage Classification

The CCA detected canopy damages associated with selective logging and forest
burning using the location of log landings as contextual information and the NDFI as
the spectral information sensitive to canopy damages. The classification results were
very accurate for the transect areas (Figure 1). The canopy damages were detected in
all transects of Managed Logging, Conventional Logging and Logged and Burned
classes. In the Non-mechanized Logging, however, the CCA algorithm did not detect
canopy damage because the forest pixel showed NDFI values above the detection
threshold and no log landing existed in these areas. Cleared areas for building log
landings and logging roads were detected and mapped within the Managed Logging
transect areas, but tree fall gaps were less frequently identified because of the
reduced canopy damage characteristic of forest management practices used in these
forests (Johns et al., 1996). In the Conventional Logging transect sites, the canopy
damage area was much greater than that detected in the Managed Logging transect
sites. This is to be expected due to the more intensive canopy damage associated
with unplanned logging operations. All Logged and Burned transect areas, which
show the most severe canopy damage impacts, were mapped accurately with the
CCA classifier.

It was not the objective of this study to perform a time-series classification, so
only the full classification results for 2000, which corresponds to the year that the

aerial videography data were acquired. In the study area (about 30,000 km ?), 65%
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was classified as Intact Forest, 22% as non-forest (i.e., deforested areas and water
bodies) and 13% was classified as canopy damaged areas.

Examples of canopy damaged areas detected with the CCA classifier, outside the
transect areas, are shown in Figure 11. Selectively logged areas that have an
irregular spatial arrangement of log landings and logging roads are usually
associated with more damage than unplanned harvesting operations. Managed
logging operations are characterized by a more regular arrangement of log landings
and roads. The CCA values for unplanned logging areas showed a much higher
proportion of canopy damage, relative to intact forest, than the proportions from
managed logging areas (Figure 11a,b). Forest areas that were subjected to the more
drastic impacts of logging and burning have virtually all of the canopy area mapped
as damaged (Figure 11c).

The overall accuracy of the CCA classifier was 90.4% and the user’s accuracy of
the canopy damage class was 94% (Table 7a). Most of the error, revealed in the error
matrix, is associated with the classification of reference canopy damage data as
forest (23%). This misclassification is expected due to the land cover mixing
between intact forests, canopy damaged forests and areas subjected to clear-cut (i.e.,
log landings and logging roads) that typify selectively logged forests. The canopy
damage map accuracy has also been assessed using the shade-normalized GV
fraction as the search image to detect canopy damage (threshold ranging from 50 to
75%). The overall accuracy dropped from 90.4% using NDFI to 86.8% using the

shade-normalized GV to detect canopy damage (Table 7b). The user’s accuracy of
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the canopy damage class obtained with the shade-normalized GV (92.0%) was
virtually the same as the one obtained using the NDFI image (94.0%). But the user’s

accuracy of the forest class was 6% lower using shade-normalized GV (Table 7b).

Canopy Damage

Figure 11. Canopy damage classification examples obtained with the
CCA classifier.
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Table 7. Accuracy assessment results of the CCA classifier: a) using the
NDFI as the search image for CCA; b) using GV as the search image for CCA.

a) NDFI accuracy assessment

Classified Reference Pixels Users
Pixels Canopy Accuracy
Non-forest Forest Damage Total (%)
Non-forest 454 0 17 471 96.4
Forest 6 625 117 748 83.6
Canopy Damage 40 0 616 656 93.9
Total 500 625 750 1875
Producers Accuracy (%) 91.0 100.0 82.0
Overall Accuracy = (1695/1875) =90.4%
Kappa Coefficient = 0.85
b) Shade-normalized GV accuracy assessment
Classified Reference Pixels Users
Pixels Canopy Accuracy
Non-forest  Forest Damage Total (%)
Non-forest 454 0 17 471 96.4
Forest 6 625 185 810 77.0
Canopy Damage 40 0 548 594 92.0
Total 500 625 750 1875
Producers Accuracy (%) 91.0 100.0 73

Overall Accuracy = (1627/1875) = 86.8%

Kappa Coefficient = 0.80

" The accuracy error matrix obtained after removing 5 blocks of canopy damage reference data that
were subjected to land cover changes within the period of Landsat image and videography images
acquisitions, and after geo-correcting five block samples, also of this class, as proposed by Powell et

al. (2004).

The detection of log landings is crucial for a successful implementation of the

CCA classifier. Recent log landings can be easily identified in selectively logged

forest and were accurately mapped. In severely logged and burned forest, however,
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not all log landings could be mapped. However, this did not represent a problem in
these areas because very large contiguous canopy damaged areas are associated with
these forests and only a few log landings are required as start locations for the 2D-

search program that seeks canopy damage areas.

3.6. Discussion

The NDFI and the CCA methods proposed in this study have the potential to
contribute to the mapping of degraded forest associated with selective logging and
burning in the Amazon region. The NDFI provides higher sensitivity to detected
canopy damage than individual fraction values derived from SMA. The CCA
classifier utilizes the location of log landings — the spatial signature of selective
logging — to look for canopy damaged areas, enabling the distinction between natural
and anthropogenic forest disturbances. Because most forest fires occur in logged
forests (Cochrane, 2003), this methodology can also detect and map forest canopy
damage due to forest fires.

The detection and mapping of forest canopy damage due to logging and forest
fires is intimately related to the detection of log landings and to the damage intensity.
The detection and mapping of Non-mechanized Logging is not possible because this
type of logging does not build log landings and generates low canopy damage. But,
this type of selective logging in the Amazon region is associated with less than 5% of
the timber production in the region (Lentini et al., 2003) with Conventional Logging

and, to a lesser extent, Managed Logging the dominant forms. For these two types of
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logging, detection and mapping of log landings are imperative to the success of the
NDFI-CCA methodology. The log landing detection and mapping depends on
empirical thresholds (Souza Jr. et al., 2003; Monteiro et al., 2003). The first threshold
is applied to identify forested pixels with high soil fraction (i.e., Soil > 10%)
associated with logging roads and log landings. Next, an area threshold is applied to
map log landings (i.e., 1 to 4 contiguous pixels). These thresholds cannot be
generalized to the whole Amazon region — it is likely that new thresholds have to be
defined for other types of forests where selective logging is taking place such as
dense and open forests. The same caution should be used when applying the NDFI
threshold to other types of forests to detect canopy damages.

The NDFI-CCA approach identifies and maps a variety of canopy damages
associated with selective logging including the construction of roads and log
landings, tree fall gaps, and all canopy damaged areas in burned forests. Tree fall
gaps and burned forest are responsible for most of the biomass impacts and forest
damages in selectively logged areas (Johns et al., 1996; Gerwing, 2002). Undamaged
forests within the logged forests area not mapped with the NDFI-CCA methodology.
The method proposed by Souza Jr. and Barreto (2000),which uses the location of log
landings and a field-calibrated harvesting radius to estimate the total area potentially
impacted by logging (i.e., damaged and undamaged forests) could be integrated with
the NDFI-CCA method proposed in this study. By integrating these two approaches,
the proportion of canopy damage, detected with NDFI and CCA, could be calculated

relative to the total logged area. Such information would be useful for local
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monitoring of approved forest management plans and certified logging operations,
which are expected to harvest trees with a minimal amount of canopy damage. For
example, the Forest Stewardship Council (FSC) has defined a set of on-the-ground
forestry operation standards to provide certification to loggers

(http://www.fscoax.org/index.html). Currently, 1.8 million hectares of forests are

certified in the Amazon region (FSC-Brazil; http://www.fsc.org.br/).

The NDFI-CCA method can also be integrated with existing methods to sub-
classify canopy damaged areas into classes of degraded forests (e.g., managed
logging, conventional logging, heavily logged and burned forests). For example, a
decision tree classification was used to map several classes of degraded forests in the
Eastern Amazon using GV, NPV and Shade fraction images derived from SPOT 4
(Satellite Pour L'observation de la Terre ; Souza Jr., et al. 2003). I tested this
approach in the transitional forests of Sinop, using fraction images derived from
Landsat images, and found the results to be less accurate than those obtained for the
dense forests of the Eastern Amazon due to confusion caused by the more open
nature of these forests. However, the CCA method can be used to flag a region of
forest as degraded for subsequent classification using decision trees, thereby
increasing the overall accuracy of the method. There is the potential for additional
improvement, by combining the NDFI image with the other fraction images, in the
decision tree classification. This is an area of ongoing experimentation by our

research group.
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Access to cloud free images over the Amazon is critical for monitoring forest
degradation. The optimal temporal resolution for detecting selective logging and
burning is one year using the GV fraction and two years with the NPV fraction
(Souza Jr., et al., in press a). The results indicate that the optimal temporal resolution
of NDFI to detect canopy damage due to selective logging and burning is also one
and two years, respectively. However, the NPV and the GV forest degradation
signals are not as strong as the NDFI signal, making the detection and mapping of
forest canopy damage more accurate with NDFI.

The NDFI statistics extracted for the Intact Forest transects and for the degraded
forest transects are compatible with the field-measured biophysical properties (Table
5). The observed amounts of intact vegetation decreased with increasing forest
degradation intensity and the corresponding amounts of detected wood debris and
soils increased. The NDFI mean decreased as intact vegetation amounts decreased
and the amount of wood debris and disturbed soil increased. Therefore, there is also
potential to correlate canopy cover and biomass field measurements with the NDFI.
More detailed studies, however, need to be conducted to demonstrate if these
biophysical forest properties can be estimated with NDFI.

Further image processing improvements that would prove helpful include
developing fast and generic SMA models to generate physically meaningful fraction
images over the Brazilian Amazon. Such generic SMA models have been suggested
by Small (2004), due to the consistent topological structure of Landsat images

spectral space. Currently, available SMA automation techniques use a combination
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of very large endmember spectral libraries and Monte Carlo simulation (Bateson et
al., 2000; Asner et al., 2004), which are computationally prohibitive for most
Brazilian government agencies. The proposed NDFI-CCA methodology should be
compared with the existing methods used to map selective logging and forest fire

damage.

3.7 Conclusions

The NDFI and the CCA classifier can contribute to ongoing efforts to map and
monitor logging operations in the Brazilian Amazon. NDFI enhances the detection
of canopy damage over existing techniques and can be used in conjunction with the
CCA algorithm to unambiguously map forest canopy damage caused by selective
logging and burning. Additionally, the proposed techniques can be integrated with
existing image processing methods to classify the damaged forest canopy areas into
sub-classes of degradation. Image processing improvements, including the
development of fast and generic SMA techniques for generating consistent NDFI
images across the Amazon region, will be necessary to fully automate such forest
degradation analyses. This is important for practical monitoring applications by
government environmental agencies and private institutions tasked with certifying

logging operations.
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CHAPTER IV: Long Term Forest Degradation Mapping and

Change Detection in the Southern Brazilian Amazon Forests

4.1. Introduction

Tropical forests of the Brazilian Amazon have changed greatly in the past 30
years. Two key forest changes in the region are forest conversion to agriculture (i.e.
deforestation) and forest degradation by such processes as selective logging and
forest fires that only partially deforest an area. Forest conversion replaces the
original forest cover by another land cover type (e.g., forest to pasture), whereas
forest degradation changes the original forest structure and composition, but without
completely removing the original forest cover. Forest can be degraded by natural
phenomena (e.g. treefalls, windthrows, lightning strikes) or by anthropogenic
activities. Selective logging and forest fires are the main anthropogenic disturbances
responsible for forest degradation in the Amazon (Nepstad et al., 1999; Cochrane et
al., 1999; Cochrane, 2003). Although natural forest fires may have historically
occurred, these events have been so rare that forest tree species are almost all
extremely sensitive to fire disturbance, exhibiting no evolutionary adaptations
specific to fire (Uhl and Kauffman 1990). The current prevalence of forest fires in
the Amazon has been clearly linked to human fire use (Cochrane 2001, Cochrane et
al. 2004).

Forest conversion has been quantified using satellite remote sensing in the

Amazon region by a long-term deforestation monitoring program (INPE, 2003),
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providing relevant information for policy making such as the location and
geographic extent of deforestation and estimates of deforestation rates (e.g., Casa
Civil, 2004). Several local and regional studies have focused on the identification and
mapping of deforestation (e.g., Fearnside and Salati, 1985; Fearnside 1989; Skole and
Tucker, 1993; Alves and Skole 1996; Roberts et al., 2002). Pasture to second growth
transitions, and second growth succession have also been the focus of several studies
(e.g., Moran et al., 1994; Adams et al., 1995; Rignot et al., 1997 Nelson et al., 2000).

More recently, pioneering remote sensing techniques for mapping forest
degradation have been developed (Cochrane and Souza Jr., 1998; Souza Jr. and
Barreto, 2000; Monteiro et al., 2003, Souza Jr. et al., 2003), however, they are still
being perfected (Souza Jr. et al., in review). Existing change detection analyses of
degraded forest in the Amazon have been of limited use due to the types of imagery
available, evolving techniques, and a lack of frequent enough image dates to fully
characterize selective logging (Stone and Lefebvre, 1998; Souza Jr. and Barreto,
2000; Monteiro et al., 2003) and fire dynamics (Cochrane et al. 1999, Cochrane
2001). Single date, infrequent or short-term satellite acquisitions are potential
sources of errors in forest degradation temporal analyses due to rapid canopy closure
and regeneration of degraded forest (Stone and Lefebvre, 1998; Lambin, 1999; Souza
Jr. et al., in press a).

Annual forest degradation maps would enable estimation of forest degradation
rates, and an understanding of the relationships between forest degradation,

deforestation (Cochrane et al., 1999; Cochrane, 2001) and selective logging
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(Cochrane et al., 2004). This is key information for land cover change models that
could be useful for predicting the future of the Amazon and the impacts of forest
degradation on hydrological, biogeochemical and carbon cycles (Bazzaz, 1998;
Giambelluca, 2002; Houghton et al.,2000). Environmental agencies could also
benefit from the ability to monitor the expansion of degraded areas, facilitating
enforcement of environmental protection laws.

A pioneering study that utilized a robust multi-temporal analysis of degraded
forests, encompassing 20 years of Landsat images has been conducted in the
Southern Amazon (Souza Jr. et al., in press). The aim of the study was to statistically
define the most useful information, extracted from Landsat images (e.g., reflectance
bands, vegetation indices and fraction images), for detecting forest degradation
changes caused by selective logging and forest fires, as well as the optimal temporal
resolution for mapping these changes. Here, I present results from a twenty year long
series of annual Landsat imagery that was used to map and quantify the rates of
forest degradation caused by selective logging and forest fires. Additionally, I
characterize and quantify the relationship between deforestation and forest
degradation in the study area by answering the following questions: How much
degraded forest is subsequently deforested? What are the observed fates of the

degraded forests in the study area?

84



4.2. Study Area

The change detection analysis was conducted in the area defined by the
intersection of the all Landsat images used in this study (path 226, row 68),
encompassing 28,750 km?”. This Landsat path/row covers the Sinop region, an
important sawmill center of the state of Mato Grosso during the 1990’s (Figure 1).
Transitional forest between ‘cerrado’ and dense tropical forest is the main forest type
found in this region. The topography is predominantly flat, on Latosol soils with an
average annual precipitation of 2,000 mm. The dry season is characterized by several
months of less than 100 mm of precipitation and typically extends from May to
October (RADAMBRASIL, 1981). The main land uses in this region are agricultural
(e.g. ranching and soybean cultivation) and selective logging. Selective logging
extracts only a few of the most valuable trees from each hectare of forest but logging
operations frequently cause extensive damage to the remaining trees and fracture the
forest canopy (Uhl and Vieira, 1989). Forest burning is also common in this region,
acting synergistically with selective logging to increase forest canopy damages
(Monteiro et al., 2004; Cochrane et al., 2004). Conventional logging and forest fires
are the main causes of forest degradation in the region, reducing on average the forest

canopy cover by 33% and the live biomass by 45%. (Souza Jr., et al., in press).

4.3 Data set

Eighteen Landsat Thematic Mapper 5 (TM) images and three Landsat Enhanced

Thematic Mapper (ETM+) images were used in this study (Table 1). The imagery
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was acquired during the dry season of each year between 1984 and 2004. Limiting
imagery dates to the dry season minimizes any potential misclassification of forest
degradation due to seasonal changes. The number of days between image
acquisitions varied from 299 to 433 days, with an average of 359 days (Table 1). For
annual rate calculations of deforestation and forest degradation, the change
increments quantified between satellite image dates were normalized to 365 days
(i.e., the change detect between two consecutive dates divided by the number of days

and multiplied by 365).

4.4. Methodology

The forest conversion and forest degradation change detection analyses consisted
of three image processing stages: pre-processing, canopy damage classification and
forest change detection (Figure 12). The image processing techniques of each stage

are described in detail in the subsections below.

4.4.1 Pre-processing

a) Georeferencing and Registration

Image registration is an important step in remote sensing change detection
because pixel misregistration can introduce error in the quantification of land cover
changes. First, the Landsat ETM+ image acquired in 1999 was georeferenced using
30 image control points extracted from NASA GeoCover 2000 Mosaic

(https://zulu.ssc.nasa.gov/mrsid/). Next, the georectified Landsat image was used as
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the base image for registering the remaining images (Table 2). A minimum of 14
image control points were used and the maximum root-mean-square error allowed
was 1 pixel in the image registration process. The RMS varied from 0.53 to 0.97,
which assures that the changes detected over time were not contaminated by
misregistration (Verbyla and Boles, 2000). The software Environment for
Visualizing Images — (ENVI 4.0; Research Systems, Boulder, CO) was used for

these tasks (Figure 13).

b) Atmospheric Correction

The 1999 Landsat reference image was converted from encoded digital number
(DN) to reflectance. First, the reference image was converted to radiance using the
gains and offset provided in the image metafile. Next, the radiance image was
converted to reflectance using the software Atmospheric Correction Now 4.0
(ACORN:Analytical Imaging & Geophysics, Boulder, CO). The atmospheric
parameters that cannot be estimated from the Landsat bands were estimated using a
trial-and-error sensitivity analysis of a dark object reflectance (a lake). The estimated
water vapor and the image atmosphere visibility were 40 millimeters and 25 km,

respectively, for the reference image (Figure 12).

c) Image Inter-calibration

The other images (Table 2) were inter-calibrated to the reflectance image using a
relative radiometric calibration approach (Roberts et al., 1998; Furby & Campbell,

2001), regressing encoded radiance against reflectance in the reference image. This
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technique assumes uniform atmosphere over the image scene, and that invariant
ground targets can be found in the reference and the uncalibrated images. To account
for spatially variable atmospheric contamination due to haze and smoke, the Carlotto

(1999) technique was applied to those images that had significant contamination
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Figure 12. Image processing chain conducted in the forest change detection
analyses.
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prior to relative radiometric calibration. The Carlotto technique is based on the
assumption that smoke and haze only adversely impact the visible bands, leaving the
NIR and short-wave Infrared bands unchanged. Statistics are calculated for the entire
image, in which average values for TM bands 1, 2 and 3 are calculated for each
unique combination of TM bands 4, 5 and 7. After calculating these statistics, the
original values for TM bands 1, 2 and 3 for a specific combination of bands 4 to 7
are then replaced with the scene averages for that combination. This approach,
developed by Carlotto (1999) has the effect of homogenizing contamination
throughout a scene — thus clear sky portions of the image gain a slight amount of
contamination, while contamination is significantly reduced in areas under smoke or
haze.

Typical invariant targets used included intact forest, second growth, green
pasture, bare soil and water. Second growth and green pasture were only used as
invariant targets for images that were no more than two years apart from the
reference image date. The slopes and intercepts for the relative radiometric inter-
calibration were obtained from a linear regression that was estimated using the pixel
mean values, extracted from a 3 by 3 pixel area, of the invariant targets for each
band. These coefficients normalize the uncalibrated images to the reference images,

converting Digital Numbers of the uncalibrated images to reflectance (Figure 12).

4.4.2 Canopy Damage Classification

Fraction images derived from Spectral Mixture Analysis — SMA — (Adams et al.,

1993) perform better than reflectance bands and vegetation indices in detecting forest
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degradation caused by selective logging and forest fires (Souza Jr., et al., in press a).
The Normalized Difference Fraction Index — NDFI was chosen as the spectral index
for the analysis because it synthesizes all fraction images, derived from SMA, into a
single band that enhances the detection and mapping of canopy damage (Souza Jr. et
al., in press b; and Chapter III for details). For these reasons, fraction images and
NDFI were chosen for mapping deforestation and canopy damage prior to the forest
change detection analysis.

SMA was applied to decompose the Landsat TM/ETM+ reflectance data of each
pixel into fractions of green vegetation (GV), non-photosynthetic vegetation (NPV),
Soil and Shade. Detailed information on how these models were computed and
validated for these Landsat imagery data sets can be found in Chapters II and III.
Once the fractions are obtained, the NDFI can be computed as:

GV, — (NPV + Soil)

NDFI =
GV, + NPV + Soil (13)

where GVpqqe 1 the shade-normalized GV fraction given by,

GV
GV, =— " 14
Shade 100 — Shade (14)

The NDFI values range from -1 to 1. Forests of the study area have high NDFI
values (i.e., > 0.75) and degraded forests showed moderate to low NDFI values (i.e.,
0.4 <NDFI < 0.75) (see Chapter III for details).

The land cover types of interest for this study were: forest, clear-cut and forest
with canopy damage. A decision tree classification (DTC) of fraction images and

NDFI was used to create the base land cover map from the 1984 Landsat image that
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was then used in the multi-temporal forest change analysis. Visual inspection of the
DTC results, in conjunction with fraction color composite (R=Soil, G=GV,
B=NPV), was performed to locate classification errors. Classification errors were
then corrected manually. Common errors included small areas of green pasture or
agriculture fields being misclassified as forest. The final 1984 classification base
map had the following classes: Forest, Clear-cut and Non-forest (i.e., water and
wetlands). The Non-forest class was used as a mask for all other images acquired
after 1984 because I am not interested in quantifying changes associated within this
class.

The forest canopy damage class was mapped separately for each individual
image using a contextual classification algorithm — CCA — (Souza Jr. et al., in press
b). The locations of log landings, which are the storage area scraped clear of
vegetation by loggers, are extracted from the Soil fractions (Souza Jr. and Barreto,
2000; Monteiro et al., 2003). The CCA integrates the log landing locations with the
NDFI image in a 2D-search program that looks for the range of values (0 to 0.75) in
the NDFI images that are associated with canopy damages caused by selective
logging and forest fires in this region (Souza Jr., et al., in review). In addition, large
negative differences in NDFI values (i.e., < -0.75) detected between each pair of
image dates (i.e., recent NDFI minus old NDFI) were used to map recently

deforested areas and update the base land cover map (Figure 12).
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4.4.3 Forest Change Detection

The change detection analysis was done using an algorithm designed to detect
and quantify the following forest changes: Forest to Clear-cut, Forest to Canopy
Damage, Canopy Damage to Forest, and Canopy Damage to Clear-cut (Figure 13).
Next, annual rates of deforestation and of forest degradation - represented by the
forest canopy damage class — were computed by normalizing the changes estimated

between the acquisition intervals of each pair of images to 365 days (Table 1).

Forest ——>| Deforestation —— Land cover
A conversion
o — — — Land cover
N modification
~
~
Canopy Damage

Figure 13. Forest Change detected with the multi-temporal analysis.

4.5. Results

4.5.1 Image Classification

By 1984, 8.8% of the study had already been deforested while virtually none of
the forest showed canopy damage. However, by 2004, deforestation had increased to
28.2% of this region and 15% of the remaining forests showed canopy damage from
recent logging and forest fire (Figure 14). Of the remaining forest (71.8% of the

image), 15% had detectable canopy damage caused by selective logging and fires.
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Because forest canopy damage caused by selective logging and forest
firesrecovers within one to two years (Souza Jr. et al, in press a), the area mapped as
Forest for individual years did not show a constant decrease, but a pattern of
shrinking and expanding over time (Figure 14). Canopy Damage mapped in one year
is likely to be mapped as Forest in the next year if the damaged forest is not further
degraded by fire or converted to pasture and agriculture fields. For example, in 2000,
Forest was 65% of the study area and the Canopy Damage was 12%. In 2001, the
area classified as Forest increased to 70% because much of the Canopy Damage area
mapped in 2000 had recovered and was mapped as Forest (Figure 14).

The classifications also revealed that the area annually affected by forest
degradation — classified in the study as Canopy Damage — varies from year to year
and is substantial in many years (Figure 14). On average 3.7% of the forested area
was classified as Canopy Damage each year. Seven years showed forest areas with
Canopy Damage above the average over the twenty-year time period (1993, 1996,
1998, 2000, 2001, 2003 and 2004). In the years 2000 and 2004 the Canopy Damage
was more than 10% of the study area (i.e., > 15%"of the total forest area). These
statistics are for single date classifications and do not take into account older
degraded forests which may have intact canopies but which are not compositionally
or structurally equivalent to intact forest. Therefore, truly intact forest that has not
been degraded by selective logging and forest fires, might be much smaller than the

60% of the study area classified as Forest in 2004. Only a multi-temporal change
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detection analysis can reveal how much forest area is actually free from disturbance

over the last 20 years.

4.5.2 Forest Change Detection

Four forest change classes were detected and quantified with the multi-temporal
analysis: Forest to Clear-cut; Forest to Canopy Damage (i.e., forest degradation);
Canopy Damage to Clear-cut; and Canopy Damage to Forest (i.e., regeneration)
(Figure 13). The area percent change of these class transitions was computed,
relative to the study area, for each pair of dates (Table 8). Overall, the percentage of
forest area that changed to Canopy Damage each year was, on average, two times
larger than the area deforested (Table 8). The Forest to Canopy Damage change was
three times larger than Forest to Clear-cut in three periods (1988-1989, 1995-1996,
2003-2004). From 1997 to 1998 and from 1999 to 2000, forest change to Canopy
Damage was very high, damaging an area larger than 1,400 km® (5% of the study
area; Table 8).

On average, about 89% of the Canopy Damage class was mapped as Forest in
the subsequent year. The remaining 11% was either deforested or subjected to a
recurrent degradation event in the following year. The degraded forests (i.e., Canopy
Damage class) contribute on average 16% of the total deforestation, representing on
average 10% of the area annually affected by forest degradation. It is important to
highlight that the forest change statistics presented on Table 8 do not include the
percentage of old degraded forests converted by deforestation (Table 8). Because

degraded forests can change to Forest within one to two years (Souza et al., in press
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a), some of the Forest to Clear-cut changes may certainly be due to Canopy Damage
that changed to Forest and then changed to Deforestation. A more detailed change
detection analysis was performed to account for the percentage of old degraded

forests that were converted by deforestation.
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Figure 14. Areal percent of Forest, Canopy Damage and Non-forest
quantified in the forest change detection analysis.

4.5.3 Deforestation and Forest Degradation Rates

The annual rates of deforestation and forest degradation (i.e., Forest to Canopy
Damage) are presented in Figure 15. The average annual deforestation rate was less
than 1% from 1984 to 2004. From 1992 to 1993 and 2002 to 2003, the deforestation
rate was twice the average annual deforestation rate and from 2003 to 2004, the rate

increased by three-fold relative to the average annual deforestation rate (Figure 15).
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Figure 15. Annualized deforestation and forest degradation rates.

The annual rate of forest degradation in the study area was always greater than
the deforestation rates, except from 1998 to 1999 which showed a deforestation rate
(1.2%) two times greater than the forest degradation rate (0.6%; Figure 15). The
average annual forest degradation rate was 2.8%, almost three times the average
annual deforestation rate. Six peaks of forest degradation were identified (1988-
1989, 1992-1993, 1995-1996, 1997-1998, 1999-2000, 2002-2003 and 2003-2004).
Only the forest degradation peak from 1992 to 1993 showed a high corresponding
deforestation peak. Three very high forest degradation rate peaks were detected
(1997-1998, 1999-2000 and 2003-2004 (Figure 14). Most of the forest degradation
mapped in these years showed Canopy Damage area associated with forest fires.
When examining historical climate records most of these forest degradation peaks
coincided with or are immediately after El Nifo years (source:

http://www.elnino.noaa.gov/).
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Table 8. Percentage of Forest and Canopy Damage changes quantified in the forest change detection analysis

relative to the study area.

Number of Forest to Canopy Damage Total Forest to Canopy
Time Interval Days between Clear-cut to Clear-cut Deforestation Canopy Damage to
Image o o o Damage Forest

(year) Acquisition (%) (%) (%) (%) (%)
1984 to 1985 379 0.5 0.0 0.5 1.7 0.0
1985 to 1986 394 0.6 0.1 0.7 0.9 1.3
1986 to 1987 318 0.3 0.0 0.3 0.4 0.8
1987 to 1988 406 0.4 0.0 0.4 0.9 0.3
1988 to 1989 380 0.6 0.1 0.7 2.7 0.5
1989 to 1990 332 0.2 0.1 0.3 0.4 25
1990 to 1991 330 0.2 0.0 0.2 0.5 0.8
1991 to 1992 383 04 0.0 0.4 1.5 0.6
1992 to 1993 391 1.9 04 2.2 3.0 0.5
1993 to 1994 306 0.5 0.0 0.5 0.7 3.2
1994 to 1995 341 0.6 0.1 0.7 2.0 0.7
1995 to 1996 378 0.8 0.1 1.0 3.5 1.0
1996 to 1997 394 1.1 0.7 1.8 1.8 2.5
1997 to 1998 301 0.7 0.1 0.8 5.7 1.2
1998 to 1999 433 1.1 0.3 1.4 0.7 6.5
1999 to 2000 307 1.0 0.1 1.1 11.0 0.5
2000 to 2001 402 0.6 0.3 0.9 1.5 6.2
2001 to 2002 332 0.7 0.2 0.8 1.3 5.2
2002 to 2003 386 1.8 0.3 2.1 2.8 1.4
2003 to 2004 299 2.3 0.2 2.5 8.2 1.1




4.5.4 Canopy Damage Age and Frequency

The time series data set were used to generate a complete Canopy Damage age
map by combining all the individual annual Canopy Damage maps and assigning
degraded forest pixels the year of the first degradation event. The Canopy Damage
age map allowed us to identify and quantify the amount of old degraded forest (i.e.,
degraded more than one year ago) that was converted by deforestation. This type of
analysis is useful for overcoming the difficulties in detecting the percentage of old
degraded forests converted to deforestation, discussed in the section 4.5.2, and
provides a better estimation of the percentage of intact forest in the region.

Figure 16 shows two subsets (15km x 15 km) of the study area with examples of
Canopy Damage age maps of forest areas that were predominantly degraded by
selective logging (Figure 16a) and forest fires (Figure 16b). These examples show
that most of the forest area was degraded between 1984 and 2004. The Canopy
Damage mapped in 2004 (i.e., dark blue areas in Figure 16) represents less than 10%
of the total area affected by forest degradation. The cumulative Canopy Damage area
represents 23% of the study area, or 32% of the total forest area mapped in 2004.
The single-date classification for 2004 mapped 11% of the study area as Canopy
Damage (15% of the forest area). Therefore, single-date classification
underestimates the cumulative Canopy Damage area by 8%, but when considering
the average area mapped as Canopy Damage (3.7%) over the twenty-year period, the

underestimation would certainly be much higher for other years.
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Figure 16. Canopy Damage age map of two sub-sets (15 km x 15 km) of the
study area. In (a) selective logging damage is more common and in (b) forest
fires are the major causes of canopy damages.

The number of times a forest was classified as Canopy Damage was also

computed (Figure 17). Fifty percent of the total forest area mapped as Canopy
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Damage during the twenty-year time period occurred only once. Forest degradation
events were detected twice for 20% of the total Canopy Damage area, and the
remaining 30% were subjected at least to three degradation events (Figure 17).
These results show that selective logging and forest fire recurrence are common in

this region affecting 50% of the degraded forests.

60% -

(&)

3

>
1

40% A

30% A

20% A

Total Canopy Damage Area (%)

10% A

0%' =T T T T T T T T T T 1

1234567 8 91011121314151617181920

Canopy Damage Frequency

Figure 17. Average areal percentage of the Canopy Damage class converted
by deforestation as a function of how many times the forest had been degraded.

Traditional change detection analysis calculates change statistics for each pair of
images. Because degraded forests due to selective logging and forest fires change
back to forest spectral signatures within one to two years (Souza Jr. et al, in press),
this type of change detection approach does not allow for the estimation of how long

it takes for a degraded forests to be converted by deforestation. The canopy age map
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was also used to overcome this type of problem. First, the first pair of Canopy
Damage maps (i.e., from 1984 and 1985) were combined to generate the first
Canopy Damage age map and changes of the Canopy Damage to Deforestation were
computed. At this stage, only one-year Canopy Damage areas existed. Then, the first
Canopy Damage age was updated with the next Canopy Damage map (i.e., 1986)
and the Canopy Damage to Deforestation conversion was calculated. At this second
stage, two classes of Canopy Damage age existed: one year (i.e., Canopy Damage in
1985) old and two year old (i.e., Canopy Damage in 1984); and two estimates of one
year old Canopy Damage to Deforestation (i.e., from 1984 to 1985 and from 1985
and to 1985). This process of updating the Canopy Damage age map with the
subsequent year maps continues and the change statistics are computed until the last
image date is reached. The result is a very large change detection matrix with several
estimates of Canopy Damage to Deforestation for each Canopy Damage age that
were averaged and summarized on Figure 18.

The Canopy Damage age time series analysis revealed that, on average, over the
twenty year period only 5% of the degraded forests were converted by deforestation
to pasture or agriculture one year after the degradation event (Figure 18). Most of the
degraded forest conversion occurs in the second year accounting for an average of
20% of the total area converted. About 55% of the degraded forests were converted
by deforestation between the third and tenth years, and degraded forests with more

than 10 years contribute, on average, with 25% (Figure 18).
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Figure 18. Average Canopy Damage area converted by deforestation as a
function of degradation age. The grey regions represent the percentage of
degraded forest converted by deforestation, while the white one the cumulative
percentage of degraded forest converted by deforestation.

4.6. Discussion

There are several change detection techniques that can be used to quantify land
forest cover changes (e.g., image differencing, post-classification change detection,
multi-date unsupervised classification; Coppin and Bauer, 1995). Image differencing,
which is computed as the difference between a recent and an old image, has also been
tested. Image thresholds are defined and applied to the difference image to classify
forest areas that did not change from those that were subject to changes between the
time interval. Both GV and NDFI images were used as variables in the image-
differencing algorithm. This technique has the disadvantage of detecting both natural

and anthropogenic changes. Misclassification of natural canopy damages as
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anthropogenic canopy damage might also happen with multi-date unsupervised
change detection. Because the CCA uses contextual information from selective
logging (i.e., log landings) to map canopy damage areas, canopy damages associated
with natural forest changes are not mapped. Therefore, post-classification change
detection is more suitable because it uses classified images that contain the forest
whose changes | am interested in quantifying.

The remote sensing techniques presented in this study have the potential to be
extended to other areas in the Amazon region. There are, however, some challenges
to reproducing these techniques in this region. First, not all regions have optical
satellite images available every year (Asner, 2001). Another important issue
associated with time-series analysis has to do with the generalization of
classification rules that can be ported through time and across regions. Atmospheric
correction plays an important role in the success of generalized classifiers
(Woodcock et al., 2001). The radiometric normalization techniques perfected by
Roberts et al. (1998) coupled with the haze correction proposed by Carlloto (1999)
can be used minimize the atmospheric noise. One remaining challenge to the
application of CCA for detecting canopy damage on very large areas, such as the
Amazon region, has to do with the SMA. Physically meaningful SMA models,
which are required for NDFI computation, depend on the right selection of
endmembers. Small (2004) has demonstrated that generic endmembers can be found
in the Landsat ETM+ reflectance space which makes it a promising tool for
overcoming the challenges to generate consistent fraction images over the entire

Amazon basin.
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4.7. Conclusions

The long term remote sensing of canopy damage detection and change analyses
showed that forest degradation surpasses, on average, deforestation rates by three-
fold in the Sinop region. I have also demonstrated that deforestation and forest
degradation are independent events and, therefore, must be accounted for separately
to capture the total forest area under anthropogenic pressure; that single date canopy
damage classification partially captures the amount of degraded forests; and finally
that recurrent logging and forest fires events were detected in 50% of the degraded
forests. The techniques for mapping canopy damage associated with anthropogenic
forest degradation and the change detection techniques presented in the study have
the potential to be applied in other tropical forests, contributing to the understanding

of the real state of these forested areas.

104



CHAPTER V: Generic Spectral Mixture Analysis and Decision
Tree Classification for Monitoring Forest Changes in the

Brazilian Amazon

5.1. Introduction

Our research group has been engaged in a project to develop automated image
classification techniques for mapping land cover changes in the Brazilian Amazon as
part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia — (LBA).
Two broad types of land cover changes can be found in the region: land-cover
conversion and land-cover modification. Deforestation and second growth are
examples of land cover conversion whereas selective logging and forest fires are
examples of land modification. The former examples represent a complete change of
the original land cover since forest is converted to pasture or agricultural fields. The
latter examples represent a partial modification of the original land cover because
the original forest structure and composition is temporarily or permanently changed,
but is not replaced by other type of land cover.

An image processing chain to process Landsat images to map land-cover types
has been developed and tested in two distinct regions in the Brazilian Amazon-
Maraba in the State of Para, Eastern Amazon (Roberts et al., 1998); and in large
arcas of the State of Rondonia, Southeast Amazon (Roberts et al., 2002). The

following land cover types were mapped in these two regions: Primary Forest,
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Pasture, Green Pasture, Second Growth, Water, Urban and Rock/Savanna. The
image processing chain to map these land cover types is: 1) retrieve reflectance; ii)
select image and reference endmembers; iii) perform radiometric intercalibration; iv)
spectral mixture analysis — SMA; and v) decision tree classification — DTC. In
addition, a protocol for map accuracy assessment has been proposed which uses
aerial videography detailed mosaics as reference and correct the sources of map
accuracy errors (Powell et al., 2004).

The image processing chain described above has also been tested to map land
cover modification associated with forest degradation in two other regions in the
Brazilian Amazon: Paragominas also in the State of Para, Eastern Amazon (Souza Jr.
et al., 2003); and Sinop in the State of Mato Grosso, Southern Amazon (Souza Jr. et
al, in press a). The techniques, particularly SMA and DTC, have improved the
detection and mapping of forest changes associated with selective logging and
burning. Finally, a novel spectral index based on the fraction images derived with
SMA has also been proposed and revealed to be more effective in enhancing the
detection and mapping of forest degradation in the Amazon region (Souza Jr. et al.,
in press b; Chapter III).

The research progresses described above to map land cover conversion and land
cover modification in the Amazon region represent a great step towards the
development of an automatic and generic image classification approach for
monitoring the Amazon region. By generic classification I mean, an algorithm that is

both spatial and temporally robust, based on a standardized set of data and
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classification rules that can be used to map land cover changes within the same
environmental conditions through time. Generic classification to monitor forest
conversion has been proposed in the literature (Woodcook et al., 2001), but has not
been tested thoroughly in the Amazon region.

Fraction images derived from SMA are physically interpretable and have been
used to identify and map land-cover changes in the Amazon (Adams et al., 1995;
Roberts et al., 1998, 2002; Souza Jr. and Barreto, 2000; Souza Jr. et al. 2003; Lu et
al., 2003; Numata et al. 2003). The greatest challenge regarding the use of fraction
images in generic classification has to do with the generation of standardized
fractions through time and space. The problem of temporal standardization has been
solved previsously with the use of reference endmembers and the application of
radiometric inter-calibration techniques (Roberts et al., 1998, Roberts et al., 2002).
One difficulty with this approach is the acquisition of reference endmembers which
requires a well-calibrated spectral library representative of the land-cover types
found in the areas of interest. An alternate approach based on the exploration of the
spectral topology space has been proposed to define a standard set of image
endmembers that can be used to generate spatially consistent fractions worldwide
(Small, 2004).

Among the image classification techniques, DTC has already been tested
successfully in large areas in the Amazon region using time-series of fraction images
(Roberts et al, 2002; Souza Jr., et al., 2003). DTC has several advantages when

compared with other image classification algorithms. First, DTC is a non-parametric
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classifier which means it requires no a priori data distribution model (Friedl and
Brodley, 1997), unlike a maximum likelihood classifier which requires normally
distributed data (Richard and Jia, 1999). The decision rules generated by a DTC are
more intuitive and more easily interpreted by both image analyst and final users
(Murthy, 1998). This is not the case for neural networks, which may outperform
DTC, but works as a black box (Richard and Jia, 1999). Another important attribute
of the DTC is that the decision rules provide knowledge about the variables used in
the classification (Murthy 1998).

DTCs, on the other hand, are very sensitive to the training sample used to
generate the decision rules. As a result, any small change to the training data will
generate a different set of rules for classifying the data (Breiman et al., 1984;
Murthy, 1998). Another potential problem with the DTC is that the decision rules are
created by a recursive partition algorithm that optimizes the data partition from the
top to the bottom of the tree. Therefore, there is no guarantee that the terminal nodes,
which are the nodes that define the classification, are the optimum partitions for
classifying the data set (Breiman et al., 1984). Genetic algorithms — which mimic
biological evolution mechanisms — have been used to overcome the data training
sensitiveness and the top-to-bottom node optimization problem of DTC. Examples
of genetic DTC include Soérensen and Janssens (2003), who used genetic DTC in
data mining applications; Angenelli et al. (2001) who used it to extract information

from scanned documents; and Delise who used it (source: http://ai-
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depot.com/Tutorial/DecisionTrees.html) to improve the classification of
environmental risk levels of chemical compounds.

Here I propose a generic classification approach for monitoring the Brazilian
Amazon forests. The generic classification utilizes a standardized set of fraction
images obtained with image endmembers defined based on the topology of the
Landsat spectral space as proposed by Small (2004). The classification rules are
obtained using a genetic algorithm to generate DTC rules. The generic classification
was applied to 40 Landsat scenes covering several sawmill centers in the Brazilian
Amazon (Figure 19). The sections below describe the methods used to generate
standard fraction images for the Amazon region and the algorithm used to run

genetic decision trees.

5.2 Methods

5.2.1 Spectral Mixture Analysis — SMA

a) Background

SMA decomposes a spectral mixture into fraction of purer material, known as
endmembers, which are expected to be found within the instantaneous field of view
(IFOV). SMA has been applied extensively in the Amazon region to generate
fractions images that are further used as variable in image classification (Adams et
al., 1995; Roberts et al., 1998 and 2002; Souza et al., 2003; Lu et al., 2003) or to

estimate biophysical properties of vegetation and soils (Asner et al., 2003; Numata et
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al., 2003; Souza et al., 2003). Most of the studies used scene-specific image,
endmembers making direct comparison of fractions difficult.

Reference endmember spectra have been proposed to standardize the fraction
results over large areas (Roberts et al, 2002). However, reference endmember spectra
are not available for most of the Amazon regions and also depend on the selection of
image endmembers to calibrate the reference endmember spectra to the image data
spectra (Roberts et al., 1998). Bateson et al. (2000) have proposed an automated
SMA approach that utilizes a very large endmember spectral library — endmember
bundles — to generate fractions; and Asner et al. (2004a, 2004b) used it in a Monte
Carlo simulation approach in mixture models. This technique generates a range of all
possible values of each fraction for each pixel. Mean fraction images have been used
to characterize land-cover composition (Asner et al., 2003) and to detect forest
changes associated with selective logging (Asner et a., 2004b). The Monte Carlo
SMA has the disadvantage of being computationally intensive and does not provide
one single standard fraction value. The mean fraction images that have usually been
used as the standard fraction generated by the Monte Carlo SMA approach (Asner et
al., 2003) may not be the best fractional decomposition of mixed pixels.

Small (2004) showed that it is possible to obtain standard global endmembers
from the Landsat n-dimensional spectral space. The methodology proposed by Small
(2004) was applied to determine generic image endmembers of green vegetation
(GV), non-photosynthetic vegetation (NPV) and soil to generate standard fraction

images of these endmembers over the Brazilian Amazon. These endmember were
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used successfully to identify, map and monitor forest changes associated with
selective logging, forest fires and deforestation in the Southern Brazilian Amazon
(Souza Jr. et al., in press a; in press b; Chapters II and III, respectively). In addition,
a novel spectral index computed with these fractions has been developed to enhance
detection and mapping of forest changes and degradation (Souza Jr., et al. in press b;

Chapters III and 1V).

b) Generic Endmembers for the Amazon Region

Generic image endmembers for Landsat images were obtained following the
methods summarized in Figure 20. Most of the techniques shown in Figure 20 are
described in detail in the previous chapters. First, the images were georectified using
image control points extracted from Shuttle Radar Topographic Mission (SRTM)
images. Next, the images contaminated by haze were corrected using a technique
proposed by Carlotto (1999), followed by atmospheric correction. Four image
subsets (500 x 500 pixels) were selected in the reflectance images to run the PPI
algorithm to find the pixels that describe the convex hull of the n-dimensional
Landsat spectral space. All data extracted using the PPI of each image were
combined and visualized using scatter matrix plots (Figure 21). The scatter matrix
made it possible to define the best set of scatter plots for identifying the generic
image endmembers. The best pairs of bands were bands three and four, four and five
and five and seven (Figure 22). Six types of endmembers were identified: GV, NPV,

soil, shade, sand and urban (Figure 22). Finally, NDFI was computed for each
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Landsat image shown in Figure 19 using GV, NPV, Soil and Shade standard

endmembers

5.2.2 Genetic Decision Tree Classification

a) Decision Trees

Decision trees generate hierarchical classification rules obtained through a
recursive partition process of classification training samples (Friedl and Brodley,
1997; Murthy, 1998). The decision tree structure is composed of classification or
partition rules, nodes, branches and classes (Figure 23). The classification rules are
composed of one variable (V;), an operator (< or >) and a numeric value that
represents the optimal binary partition, or split, of the variable V;. Two types of
nodes can be found: internal and terminal nodes. The internal nodes contain the
classification rules that partition the data to the right when V; is greater or equal to
the partition value; and to the left when V;is smaller than the partition value. By
convention, the classification rules are presented with the smaller sign (<). The
internal nodes are connected by branches from the top of the tree (i.e., root node) to
the terminal nodes that contain the classes that will be assigned to the data set
(Figure 23).

The decision trees can be symmetric or asymmetric. Asymmetric trees are more
common, but for the purpose of presenting the tree component and properties a
symmetric tree example is presented (Figure 23). The tree level (/=0,1,2,...,n)

defines the depth of the tree. The number of nodes at each level / is given by 2’ For
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example, there is only one internal node at the first level (/=0; 2°=1), two in the

second level (/=1; 2'=2) and so on.
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Figure 23. Binary decision tree classification components and structure.

The data partition of each internal node happens when an optimal binary splitting
value is found. A recursive partition algorithm is applied until the classification
criterion is obtained. There are several methods applied to stop the recursion process
from reaching the classification, i.e. the terminal node, including the minimum node
size, data deviance and tree complexity (Murthy, 1998). Even though there are
several binary partition recursive algorithms, they all have one characteristic in
common: the binary partition is optimized from the top to the bottom of the three.

This means that the first nodes are more optimized to split the data set where the
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deep node rules have sub-optimal splitting rules. The top-to-bottom splitting
optimization has been considered one of the greatest disadvantages of decision trees
because optimal classification rules are not obtained with this process (Lawrence et
al., 2004). If the first level’s internal nodes were sub-optimally generated, the
terminal nodes might be more optimal, thus generating better classification rules.
Decision trees are also highly sensitive to the quality of the classification training
data. Data noise and small changes in the data set will generate complete different
classification rules). Finally, a decision tree requires classification training samples
of equal size (Murthy, 1998). The next subsection presents a promising approach for

overcoming these decision tree problems.

b) Genetic Decision Tree Classification Algorithm

Genetic algorithms are computer programs that mimic biological evolutionary
mechanisms (Russel and Norvig, 2003). There are five major steps to implement
genetic algorithms: 1) random selection, 2) evaluation, 3) selection of the best
individuals, 4) mutation and 5) final selection (Figure 24). The genetic decision tree
classification algorithm (GDTCA), implemented to overcome the decision tree
problems described in the sub-section 5.2.2.a, is based on the following steps:

Step 1: generation of one hundred random decision trees based on uniform
random selection of 50 to 70 percent of a very large classification training sample
(i.e., more than 1000 pixels per class).

Step 2: evaluation of the best trees based on the accuracy to classify the training

samples used to generate the decision trees.
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Step 3: biased selection of the twenty best trees using a linear rank fitness (LRF)

index and roulette-wheel (Whitley, 1989):

LRF=2-SP+2(SP-1)* (Ind - 1)/(N -1) (15)
where, SP is the selection pressure which gives the probability of the best tree being
selected compared to the average probability of selection of all trees. Ind is the
inverse rank position from the most accurate to the least accurate tree; and N is the
total number of trees (N=100). For SP equals 2, then:

LRF=2*(Ind - 1)/(N -1) (16)
Next, the selection probability is computed for each tree:

P =LRF;/ 2(LRF) (17)
fori=1,....N.
Therefore, for SP equals 2 and N equals 100 (i.e., 100 trees) the best tree has Ind
value of 100 and an LRF value of 2. The P value is 0.02 and the average probability
of selection of all trees is 0.01, giving these trees twice the probability of selection
relative to the average. Finally, the selection probability of each tree is mapped to
contiguous segments of a line, such that the size of each segment of a tree is equal in
size to its probability. Thus, a random number is generated using a uniform
distribution function from O to 1 to select a tree for mutation. The tree whose
segment spans the random number is selected for mutation. Twenty trees were
selected for mutation.

Step 4: mutation of the twenty trees selected in step 3. For each tree selected, one

internal node is selected randomly. Next, one variable V;is selected randomly from
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the list of the variables that belong to the tree selected for mutation. A new variable V;
is randomly selected from the list of all existing variables in the data set. Finally, a
random splitting value is also randomly selected from the list of possible splits. The
new randomly selected variable and value are combined to create a new splitting rule
to substitute the original optimal splitting rule. The decision tree is reconstructed
from the selected internal node to terminal nodes.

Step 5: the original one hundred trees are combined with the twenty mutated

trees and the best tree is selected based on tree accuracy to classify the training

sample.
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Figure 24. Genetic decision tree algorithm.
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Steps one through five define one tree generation. One thousand tree generations
were computed using this genetic algorithm. The GDTCA was based on the
algorithm proposed by Delisle (2004). The overall assumption of the GDTCA is that
a mutation process may occur that will improve the tree accuracy and that after the
Nth generation, a more robust tree population will be created. The mutation process
was implemented to make the top-level nodes sub-optimal and the bottom-level
nodes optimal, overcoming one of the decision tree limitations. A second limitation
overcome is that the GDTCA reduces human bias in selecting the decision tree
classification training sample. The GDTCA was run using as variables the standard
fraction images and the NDFI images. The best tree obtained with the GDTCA was

used for classifying the Landsat images showed on Figure 19.

5.4 Results

5.4.1 Standard Fraction Images

For the purpose of monitoring the Amazon forests only GV, NPV, Soil and
Shade endmembers were selected to run SMA models. Figure 25 shows these image
endmembers, their respective endmember bundles obtained with the PPI results and
the mean of the endmember bundles. SMA results were evaluated as described in
Chapters II and I1I.

Fraction values of dense forests, transitional forests and open forests were
extracted to test if the fractions obtained with the standard endmembers were

spatially consistent. The forest polygons were selected with the aid of a regional
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forest map (IBGE, 2005). The polygons were located in flat terrain to reduce
topographic illumination effects. GV fractions were shade-normalized and the NDFI
values were also calculated for each forest type. The means and standard deviations
of these forest types are shown in Table 9.

NPV and Soil fractions showed spatially consistent fraction values for each forest
type. NPV means varied from 4 to 5% in dense forests, whereas the Soil means varied
from 1 to 3%. Transitional and open forests also showed small variations among the

NPV and Soil means obtained with the standard endmembers (Table 9).
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Figure 25. Image endmembers defined based on the topology of the Landsat
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obtained from the PPI results. The mean of each endmember bundle is plotted
in a dashed line.
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GV and Shade fractions showed the greatest spatial variation in mean values
(Table 9). In dense forests, the GV means ranged from 44 to 52%, and the Shade
fraction means varied from 38 to 52%. The spatial variation of GV and Shade was
higher in open forests, reaching 12% and 10%, respectively. Transitional forests
showed the most spatially consistent mean values obtained with the standard image
endmembers.

The mean spatial variation of the fraction was reduced in the shade-normalized
GV and NDFI (Table 9). The ranges of the shade-normalized GV means were 5%
for dense forests and 4% for transitional and open forests (Table 9). The NDFI
means range was 0.05 for dense and transitional forests, and 0.03 for open forests.
The NDFI means shown in Table 9 for all vegetation types are above the 0.75
threshold used to detect canopy damages in the transitional forests of the Sinop
region (Souza Jr., et al., in press b; Chapter III).

The statistical results shown on Table 9 leads to the conclusion that the standard
image endmembers generated spatially consistent fractions of NPV and Soil and that
shade-normalization and the use of NDFI reduced the illumination variation among
the scenes. Examples of fraction color composites (R=NPV, G=GV, B=Soil) and
NDFI images of four subset regions are shown for Paragominas (Figure 26a),
Santarém (Figure 26b) and Ji-parana (Figure 26¢). Most of the forest canopy
damages can be identified in the fraction color composites. However, old selectively
logged areas are better identified in the corresponding NDFI images. In the Ji-parana

region, for example, logging roads and log landings cannot be easily identified in the
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fraction color composite, but the NDFI image allowed the identification of these

features (Figure 26c).

Table 9. Means and standard deviations of standard fraction images and
NDFI for dense forest, transitional forest and open forest found in different

regions in the Brazilian Amazon.
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Figure 26. Examples of fraction (R=NPV, G=GV, B=Soil color composite) and NDFI images obtained with the
standard image endmembers for areas Paragominas (a), Santarém (b) and Ji-parana (c).



5.4.2 Generic Decision Tree Classification

Three types of decision tree classifications were run using the GDTCA. The first
type of decision tree was constructed to generate a forest/non-forest map given that a
forest mask is required for the successful application of the canopy damage
classification described in Chapter III. The land-cover classes used to generate the
forest mask were: forest, clear cut second growth and urban. The other two decision
tree classifications aimed at sub-classifying the canopy damage areas. Another
classification scheme was attempted based on the type of degradation which
included the following classes: forest, logging and burning.

The accuracy values to classify the training data of the one hundred random trees
used as input in the GDTCA varied from 87% to 92% for the Land Cover
classification (Table 10). The mean accuracy for the Land Cover classification was
89.4%, and forty-one random trees had accuracy between 89 and 90% (Table 10).
This means that most of the random trees generated for the Land Cover classification
would be closer to the mean accuracy of the one hundred random trees.

The accuracy values of the one hundred random trees for the Forest Degradation
and classifications varied between 75 and 80% (Table 10). The Forest Degradation
classification produced the low accuracy for the random trees, with a mean accuracy
of 77.4%. Most of the random trees produced accuracy near the mean accuracy value
(Table 10). The chance of generating one tree with accuracy higher than the mean
accuracy was small. For example, the highest accuracy constructed randomly was

91.8% for the Land Cover classification and only 5 out of 100 trees showed accuracy
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in 91 to 92% range (Table 9). For a more challenging classification such as the forest
degradation, only 7 trees out of one hundred showed accuracy values higher than the

mean (Table 9).

Table 10. Accuracy of the random trees for land cover, forest degradation
and degradation intensity.

Forest degradation

Land Cover Classification o
Classification

Accuracy range Number of Accuracy range Number of
(%) Trees (%) Trees
87-88 6 75-76 5
88-89 29 76-77 41
89-90 41 77-78 47
90-91 19 78-79 6
91-92 5 79-80 1
Mean 89.4 77.2
Minimum 87.6 75.4
Maximum 91.8 79.4

The tree mutation implemented in the GDTCA improved the accuracy of the trees
constructed randomly. Figure 27 shows the minimum and maximum accuracies of
each tree generation and the minimum and maximum accuracies of each mutation
process. The minimum accuracy increased by 5% for both Land Cover and Forest
Degradation classification schemes and by 2% only for the Degradation Intensity.
The improvement for the maximum accuracy of the 1000 tree generation relative to

the maximum accuracy of the random trees was smaller was less than 2% (Figure 27).
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Figure 27. Accuracy of the tree generations and mutated trees for the Land
Cover (a) and Forest Degradation (b) classification schemes.
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5.4.3 Cross-Regional Comparison

Canopy damage caused by selective logging and forest burning happened most
intensively in two regions. The first one is the NE region located in the state of Para,
encompassing the Landsat scenes (n=8) 225/61-62, 224/61-63 and 223/61-63. Two
important sawmill centers are located within this region: Paragominas and Tailandia
(Figure 19). Of the eight scenes covering this region, only three showed extensive
signs of selective logging impacts (224/62, 223/62-63) (Figure 19). In 2001, on
average 4% (i.e., 1,300 km?; 185 km x 185 km per scene) of canopy damage was
detected per scene in this region. The scenes covering the lowland regions, known as
varzea (225-223/61) showed very few logging signatures, but it is very likely that
logging is happening or had happened at high intensity in this region but cannot be
detected using the techniques presented in this dissertation. The reason for not
detecting the logging scars is that detection is difficult in flooded forests due to the
lack of soil and NPV signals. Other remotely sensed data such as microwave radar or
LIDAR images could potentially detect the forest gaps caused by logging in this type
of region.

The other region with large impacts of canopy damage due to selective logging is
located in the South, where the Sinop county is located. This region is covered by the
following scenes: 229/67-69, 228/67-68, 227/67-69 and 226/67-69 (n=11) (Figure
19). The average canopy damage area per scene in this region was 3%. The most

impacted scenes are 226/68 and 226/69. The 226/69 scene is the Sinop scene used in
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this research to develop the remote sensing techniques to detect canopy damage due
to selective logging and forest fires (Chapters II, III and IV).

The other scenes showed low signals of canopy damage due to selective logging.
These scenes are clustered into three regions: Central (n=4), SE (n=7) and SW
(n=10) regions (Figure 19). In the Central region, less than 1% of the 227/62 was
mapped as canopy damage and the other three scenes showed virtually no signs of
selective logging spatial signature and canopy damage. In this region, logging
activity started growing recently and it is expected that more signs of canopy
damage due to logging will appear in the future.

In the SE and SW regions there is no sign of selective logging. For example, in
the 231/67 scene, incipient canopy damage was detected with the NDFI technique
(Figure 26¢). The lack of signs of canopy damage associated with selective logging
in these regions raises the following question: what is the source of timber for the
sawmill centers located in these regions? It is likely that deforestation is the major
source of timber to the sawmill industries located in the SE and SW regions that
showed very low or none signs of selective logging. Deforestation is one of the
sources of timber in the Amazon region and is the easiest and cheapest way to put
legal timber in the market (Uhl et al., 1997). The high value timber species are
usually harvested prior to deforestation, and the Brazilian Environmental Agency,
IBAMA, provides authorization to commercialize them. Deforestation rates are also

high in these regions (INPE, 2003).
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It is important to highlight that the hypothesis that deforestation is the main
source of timber to many sawmill centers located in the Amazon region disagrees
with previous study conducted by Nepstad et al. (1999). These researchers used
information on the total volume of timber consumed in the sawmill centers and
transportation cost of timber to estimate the forest area affected by selective logging
impacts. The area estimates generated in this dissertation cannot be compared
directly with the forest degradation area estimated by Nepstad et al. (1999) because
they were made for different years. Nepstad et al. (1999) estimated that the forest
area degraded by selective logging annually was in the range of 10-15 thousand km?.
The estimate obtained with the NDFI-CCA approach for 2001 was about 20
thousand km? and includes canopy damages associated with selective logging and
forest fires. Nepstad et al. (1999) estimate for forest fires impacts is much higher (80
thousand km?*/year). Therefore, it is very likely that the total annually degraded
forest area found by these researchers (90-95 thousand km?/year) is overestimated.
One of the reasons why this estimate is too high is because the source of timber was
not taken into consideration in their analyses. Further research that integrates
socioeconomic field and maps derived from satellite images is need and might

reduce the uncertainties in this subject.

5.5 Discussion

Standard fractions images of GV, NPV, Soil and Shade were generated with

generic image endmembers obtained from the reflectance six-dimensional space of
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the Landsat sensor. The generic endmembers generated physically meaningful
fraction estimates for all the Landsat scenes processed (Figure 19). Examples of
fraction images of GV, NPV and Soil for Both NPV and Soil for Paragominas,
Santarém and Ji-parana are shown on Figure 26. The fractions values were non-
negative and spatially consistent (e.g., soil values were high and NPV was low on
dirt roads); Soil fraction revealed the log landings and roads and the GV and NPV
the canopy damaged areas. The calculation of the NDFI index using the standard
fractions also produced consistent NDFI values across the Amazon region (Table 10,
Figure 26).

There is a potential for defining standard reference endmembers using the
standard image endmembers generated with this research. Reference endmembers
are spectrally purer than the image endmembers and, theoretically, could generate
more accurate fraction estimates. However, a robust spectral library is required for
use in the algorithm proposed by Roberts et al. (1998) to calibrate image and
reference endmembers. The available spectral library developed for the state of
Rondodnia (Roberts et al., 2002) was tested in the Sinop region but did not produced
physically meaningful estimates of NPV (Figure 28a). Soil and NPV fractions were
not spatially consistent as well. However, these problems did not happen with the
standard image endmembers (Figure 28b).

Data standardization is an important step towards the implementation of generic
classification techniques for monitoring tropical forests (Woodcock et al., 2001).

Among the existing image classification techniques, decision trees have the potential
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to generate generic classification rules to map land cover classes and to sub-classify
canopy damaged forests. Finding the right set of data training to generate optimal

decision tree rules is the greatest challenge in decision tree classifier (Murthy, 1998).
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Figure 28. Fractions means and standard deviation (vertical error bar)
estimated using reference endmembers (a) and standard image endmembers (b)
for the Sinop transects.

The GDTCA proposed in this research helped to overcome this challenge. Overall,

the genetic mutation algorithm improved the decision tree map accuracy of the three
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classification schemes evaluated in this research (Figure 27). The tree mutation
eventually creates a tree that is more accurate than the trees from the past
generations. The accuracy improvement occurs because the mutation process
eventually creates more optimal partitions in the terminal nodes. In addition, the
GDTCA presented here is less human biased in the selection of training samples; the
only requirement is that a very large training sample be collected to generate the
initial random trees that will be used as an input in the genetic algorithm.

In order to apply the techniques successfully developed and tested in the Sinop
region (Chapters IIT) to map forest canopy damages, a forest/non-forest map is
required. The land cover classification obtained with the GDTCA algorithm made it
possible to generate this type of information using a generic set of decision rules.
Examples of forest/non-forest maps obtained with GDTCA are shown in Figure 30.
One classification problem detected was the confusion between second growth forest
and old degraded forests. These classes have similar signatures in the Landsat
spectral domain and a two-step classification will be required to distinguish them out
accurately. First, second growth and forest regeneration classes should be combined
with the forest class. The CCA technique proposed in this research can be used to
map out the forest regeneration. The pixels of the combined second growth and
forest regeneration classes that were not mapped by the CCA algorithm would be
classified as second growth forest since log landings are not found in this type of
environment. Another improvement in the Land Cover GDTCA is to include cloud

and shadow classes in the classification scheme. The Landsat images used to
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extracted training samples for the GDTCA were cloud free and for this reason these
classes were not include in the GDTCA training sample. However, this will not
represent a problem because both cloud and shadow have been successfully mapped
with decision trees in the Amazon region (Roberts et al., 1998; 2002) and could be
easily incorporated to the GDTCA.

The GDTCA accuracy in sub-classifying canopy damaged forest degradation
classes (e.g., logged, burned and clear cut) was 81% (Figure 28; Table 10). Because
selective logging and burning may result in the same level of canopy damages and
act synergistically, degrading the forests, it was not possible to sub-classify these
two classes accurately. Figure 30 shows an example of an area that was both
conventionally logged and burned, sub-classified into these classes. The forest
degradation can be easily identified in a fraction color composite (R=NPV, G=GV,
B=Soil; Figure 30b). The dark purple areas in the fraction color composite were
classified as clear cut and the light purple as burned forests. The dark green areas in
the fraction color composite were classified as logged forest (Figure 30a).

The canopy damage sub-classification were compared with the transect data
collected in the Sinop region. The results agree with the type of degradation event
observed during the forest inventory. These canopy damage sub-classification
schemes were applied to other Landsat scenes and similar results were observed.
However, more detailed field studies are required to validate the results presented in

this dissertation.
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222/64

3/62
I| 226/69

Figure 29. Examples of forest (green) and non-forest (magenta) maps
obtained with the GDTCA. The Landsat scene is shown on the left; and on the
right the sub-area indicated with the black box.
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Figure 30. Example of forest canopy damage sub-classification for the
transects 3, 4 and 5. In: a) forest degradation classes: burned (brown), logged
(yellow) and clear cut (black). The corresponding fraction color composite
(R=NPV, G=GV and B=Soil) of the classified area is shown in (b).
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Conclusions

In this chapter, I demonstrated that generic image endmember can be obtained
from well-reflectance calibrated Landsat images to generate fractions of GV, NPV,
Soil and Shade. These fraction images are key to identify and detect canopy
damaged forests as has been shown in Chapters II through IV. More accurate generic
decision tree rules were also generated with a state-of-the art genetic algorithm
perfected in this research. The GDTCA made it possible to overcome the limitations
of the traditional partition algorithms used to generate decision tree rules, which
include its human biased training sample selection and its top-to-bottom splitting
optimization that creates suboptimal terminal nodes.

It is not the objective of this research to provide an estimate of the forest area
affected by canopy damage due to selective logging and forest fires for the 40
Landsat scene areas used to test the generic endmembers. [ have demonstrated in this
dissertation that a time-series analysis would be required to accurately estimate the
forest canopy damage areas. Mapping these types of degraded forests is an ongoing
research effort that I will be leading in Brazil through Imazon, in collaboration with
Dr. Roberts and Dr. Cochrane, from UCSB and University of South Dakota,
respectively. More than 1,000 Landsat images covering the period of 2000 to 2004
are being assembled and will be processed using the algorithms developed in this

research to provide an estimate of the forest area impacted.
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CHAPTER VI: Summary and Conclusions

There has been a great need to develop agile remote sensing techniques and tools
to monitor the Brazilian Amazon rain forests. Deforestation rates have been used to
guide decision makers to formulate new policies to control the occupation and
development of the Amazon region, which has generated environmental problems,
particularly the loss of forest and biodiversity, at an unprecedented scale and rhythm.
Selective logging and forest fires significantly degrade the Amazon forest, but they
have not been monitored due to the lack of appropriate remote sensing techniques. I
have developed new remote sensing techniques to detect and map forest degradation
using Landsat images — the same type of images that have been used to monitor
deforestation in the Amazon region. Landsat images were also chosen because the
availability of extensive historical data for the Brazilian Amazon since the mid 70’s.
The main results, for each objective, and future research directions are presented in

the sub-sections below.

6.1 Objective |

In this study, a statistical multi-temporal analysis was applied to evaluate the
capability of reflectance, vegetation indices (NDVI and SAVI), normalized
difference infrared indices (NDII5 and NDII7) and fraction images, derived from
spectral mixture analysis (SMA), to distinguish Intact Forest from four classes of
degraded forests: Non-mechanized Logging, Managed Logging, Logged and Logged

and Burned. For this purpose, a robust time-series data set of Landsat TM/ETM+
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images was used in conjunction with forest inventory transects and data on
disturbance history. The study area is located near two important sawmill centers -
Sinop and Clatdia, in Mato Grosso State - in the Southern Brazilian Amazon.

Most of the remote sensing measures used to distinguish Intact Forest from
degraded forests showed statistically significant changes. Fraction images,
particularly Green Vegetation (GV) and Non-photosynthetic Vegetation (NPV) were
the most effective means tested for identifying Logged and Logged and Burned forest
in the region. The GV change, detected from Intact Forest to Logged and Logged and
Burned Forest classes, persists no more than one year, but the NPV change is still
significantly different for up to two years. In the second and third years following a
degradation event, a significant regeneration signal was observed in reflectance and
fraction images, which can be useful for identifying these types of forest disturbances
in areas where optical satellite images cannot be acquired every year.

Statistical multi-temporal analysis of reflectance, vegetation and infrared indices
and fraction images, derived from SMA, showed that fraction images are more
sensitive to changes in transitional forest environments due to selective logging and
burning than the broad-band indices tested here. Low intensity logging, such as
managed logging and non-mechanized logging are more difficult to distinguish from
Intact Forest but a regeneration signal becomes significant in the second and third
year. The time-series results showed that changes in GV and NPV fractions were
higher when Intact Forest was changed to Logged and to Logged and Burned
environments in the first year following the degradation event. In the Logged and

Burned Forests, the NPV signal was more persistent, showing a burned signature
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through the second year after forest burning. Therefore, both GV and NPV have the
potential for use in change-detection classifiers for identifying and mapping Logged
and Logged and Burned forests in the Brazilian Amazon, with images no more than

one year apart.

6.2 Objective Il

I proposed and validated a new spectral index, the Normalized Difference
Fraction Index (NDFTI), for enhanced detection of forest canopy damage caused by
selective logging activities and associated forest fires. The NDFI synthesizes
information from several component fraction images derived from spectral mixture
models. Interpretation of the NDFI data is facilitated by a contextual classification
algorithm (CCA) that enables accurate mapping of logging and fire-derived canopy
damages. The CCA uses detected log landings from Soil fraction images as a starting
location for a search through the NDFI image for canopy damage. This process
allows us to separate canopy changes due to logging and associated forest fires from
those caused by other natural disturbances. These methods were tested in the Sinop
region, in the Southern Brazilian Amazon. Forest transect inventories, conducted
along a gradient of degraded forests, were used to evaluate the performance of the
NDFI. The NDFI was more sensitive to canopy damage than any individual
component fraction and is shown to have the potential for further sub-classification

of degradation levels in forest environments. Map accuracy of forest canopy damage
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using the CCA classifier, assessed with aerial videography images, was 94%. The
proposed NDFI-CCA classifier approach can be fully automated and, therefore,
holds great promise as a forest monitoring tool in tropical forests.

The NDFI and the CCA classifier can contribute to ongoing efforts to map and
monitor logging operations in the Brazilian Amazon. NDFI enhances the detection
of canopy damage over existing techniques and can be used in conjunction with the
CCA algorithm to unambiguously map forest canopy damage caused by selective
logging and burning. Additionally, the proposed techniques can be integrated with
existing image processing methods to classify the damaged forest canopy areas into
sub-classes of degradation. Image processing improvements, including the
development of fast and generic SMA techniques for generating consistent NDFI
images across the Amazon region, will be necessary in order to fully automate such
forest degradation analyses. This is important for practical monitoring applications
by government environmental agencies and private institutions tasked with the

monitoring of certified logging operations.

6.3 Objective lll

A time-series analysis comprising twenty-one Landsat images acquired between
1984 and 2004 allowed quantification of the extent and annual rates of deforestation
and degraded forests in Sinop region - Southern Brazilian Amazon. A novel spectral
index, NDFI, and a CCA were used to first map forest canopy damaged areas due to

selective logging and forest fires, the major anthropogenic forest degradation
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processes in the study area. Next, a post-classification change detection algorithm
was used to detect four types of forest changes: Forest to Clear-cut, Forest to Canopy
Damage, Canopy Damage to Clear-cut and Canopy Damage to Forest. The forest
change detection analysis revealed that the averge annual rate of forest degradation
(2.8%) is greater than the average annual rate of deforestation (1%) over the twenty-
year time period. The time series analysis showed that 32% of the remaining forest
area in 2004 had been degraded, and that 50% of this degraded forest had been
damaged more than once. On average, 50% of the degraded forests are converted by
deforestation within five years after the forest degradation event. Deforestation and
forest degradation are independent events in the study area, and, therefore, must be
accounted separately to capture the total forest area degraded by anthropogenic
activities.

The long term remote sensing canopy damage detection and change analyses
showed that forest degradation exceeded deforestation rates on average by three
folds in the Sinop region. I also demonstrated that deforestation and forest
degradation are independent events and, therefore, must be accounted separately to
capture the total forest area under anthropogenic pressure; that single date canopy
damage classification captures partially the amount of degraded forests; and finally
that recurrent logging and forest fires events were detected in 50% of the degraded
forests. The techniques to map canopy damages associated with anthropogenic forest

degradation and the change detection techniques presented in the study have the
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potential to be applied in other tropical forest contributing to the understanding of

the real state of these forested areas.

6.3 Objective IV

Using the results of objectives I and II, I developed generic image classification
algorithms for identifying, mapping and monitoring forest degradation caused by
selective logging and forest fires in the Amazon forest. In Objective I, I
demonstrated that fraction images derived from SMA can better detect degraded
forests relative spectral bands and spectral indices. In Objective II, I developed a
new spectral index (i.e., NDFI) based on fraction images that improved detection
and mapping of forest degradation. The question addressed in Objective IV was: are
the methods tested successfully in Sinop portable to other Amazon regions?

In order to port the remote sensing techniques tested in Sinop, standard fraction
images were required. I applied the methodology proposed by Small (2004) to the
Amazon region and found out that standard fractions could be generated using
generic endmembers defined in the Landsat six-dimensional spectral space.
Physically meaningful and spatially consistent fractions and NDFI images were
obtained for forty Landsat images, covering several regions of the Brazilian Amazon.
Next, an automated decision tree classification based on genetic algorithm (GDTCA)
was proposed to generate land cover maps, in particular a forest/non-forest map,

which is key to the implementation of the forest degradation mapping technique
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tested in Sinop. The GDTCA also generated higher accurate trees to sub-classify

canopy damaged forests.

6.4 Future Research

I intend to continue this research by answering the following question: how
much forest in the Amazon region is degraded? This future research will be
conducted at Imazon, with other collaborators, including Dr. Roberts from UCSB
and Dr. Cochrane from SDSU (South Dakota State University). Currently, I am
assembling a very large data set of about 1,000 Landsat images for the Brazilian
Amazon from 2000 to 2004. This imagery data set will enable basin wide analyses
with a robust time series to characterize the impacts of selective logging and forest
fires. The remote sensing techniques developed in the scope of this dissertation have
already being applied to this very large data set of Landsat images and the results are
consistent with the ones obtained here. Therefore, these remote sensing techniques
have the potential to be applied to characterize the degraded forests in the tropics.

Besides this research initiative, there are other research questions that I am
interested in and could not be covered in this dissertation. The first one is the
estimation of biophysical properties of degraded forests. I have demonstrated in one
of the papers I wrote in the first year of my dissertation (Souza Jr., et al., 2003) that
biomass of degraded forests could be estimated with NPV fractions. I have acquired
forest biophysical data from seventy forest transects conducted in several regions of

the Brazilian Amazon in collaboration with Dr. Roberts from UCSB. I intend to

147



extend the collaboration in this area with Dr. Cochrane, who has conducted about
thirty forest transects in the Brazilian Amazon, to integrate remotely sensed data
with forest biophysical properties to calibrate regression equations between these
types of measurements. I envision that the NDFI — the new spectral index proposed
and validated in the scope of this dissertation — has the potential to correlate better
with forest biomass than NPV.

Basin wide analysis with time series will also help establish relationships
between fractions and NDFI with forest biophysical properties, such as biomass,
allowing us to quantifying carbon fluxes due to forest degradation and deforestation
in the Amazon region. The spatial distribution of carbon stocks is highly uncertain in
the Amazon region (Houghton et al., 2001) and key information is needed to conduct
research on carbon fluxes. Currently, I am collaborating with Marcio Sales and Dr.
Kyriakidis to generate better estimates of carbon distribution over the Brazilian
Amazon using geostatistical techniques. About 2,300 one-hectare plots of tree
inventories from RADAMBRASIL Project were georeferenced and used in
variogram analysis of biomass. The biomass variogram was used to provide the
parameters for kriging interpolation to generate a map of biomass distribution for the
state of Rondonia. The variogram and kriging analyses will be extended to the whole
Brazilian Amazon to generate better maps of biomass distribution. Because the
research results in this area are very promising, I envision using the remote sensing
techniques presented in this dissertation to quantify carbon fluxes in the Amazon

region due to forest degradation and deforestation.
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Forest fragmentation is another type of forest degradation that has to be
analyzed. Currently, Dr. Roberts is leading a research initiative at UCSB to assemble
and process a robust data set of Landsat images encompassing 25 years and covering
the whole state of Rondonia. Land cover maps have been produced using this very
large data set and will allow us to characterize the forest fragmentation in this
region. Fraction images and NDFI have been generated for Ji-Parana and the
preliminary results have shown that the degradation of forest fragments, in particular
forest edges, can be enhanced with NDFI. The time series will also provide ways to
estimate the rates of forest fragmentation and to characterize the temporal spectral
signature of forest fragments. I am committed to help Dr. Roberts to continue this
research activity after my Ph.D. graduation.

Given the fact that the Landsat ETM+ is not fully operational and that Landsat
TM 5 is producing degraded data, the remote sensing techniques proposed in this
dissertation have to be tested in other types of optical data. SPOT images have
already been successfully used to generate fractions of GV, NPV, Soil and Shade in
the Eastern Amazon (Souza Jr., et al., 2003). The fraction images obtained with
SPOT images were useful to identifying and mapping degraded forests, and,
therefore, can be used to generate NDFI which enhances the detection and mapping
of these type of forests. ASTER images, which have better spectral resolution than
SPOT and Landsat images, are other potential source of data to apply the techniques
proposed in this dissertation. MODIS images may be useful to detect degraded

forests using NDFI using time series because the spectral signature of degraded
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forests change very fast and these spectral changes may be sensitive to MODIS.
Finally, mapping selective logging in flooded forests (Varzea) is a very challenge
research issue that should be addressed with other type of remote sensing data (e.g.,

radar and lidar) and techniques.
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