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ABSTRACT 

 

Mapping and Spatiotemporal Characterization of Degraded Forests in the Brazilian 

Amazon through Remote Sensing 

 

by 

 

Carlos Moreira de Souza Jr. 

 

Large forested areas have recently been impoverished by degradation caused by 

selective logging, forest fires and fragmentation in the Amazon region, causing 

partial change of the original forest structure and composition. As opposed to 

deforestation that has been monitored with Landsat images since the late 70’s, 

degraded forests have not been monitored in the Amazon region. In this dissertation, 

remote sensing techniques for identifying and mapping unambiguously degraded 

forests with Landsat images are proposed. The test area was the region of Sinop, 

located in the state of Mato Grosso, Brazil. This region was selected because a 

gradient of degraded forest environments exist and a robust time-series of Landsat 

images and forest transect data were available. First, statistical analyses were applied 

to identify the best set of spectral information extracted from Landsat images to 

detect several types of degraded forest environments. Fraction images derived from 

Spectral Mixture Analysis (SMA) were the best type of information for that purpose. 



 

 ix

A new spectral index based on fraction images – Normalized Difference Fraction 

Index (NDFI) - was proposed to enhance the detection of canopy damaged areas in 

degraded forests. Second, a contextual classification algorithm was implemented to 

separate unambiguously forest degradation caused by anthropogenic activities from 

natural forest disturbances. These techniques were validated using forest transects 

and high resolution aerial videography images and proved to be highly accurate. 

Next, these techniques were applied to a time-series data set of Landsat images, 

encompassing 20 years, to evaluate the relationship between forest degradation and 

deforestation. The most important finding of the forest change detection analysis was 

that forest degradation and deforestation are independent events in the study area, 

making worse the current forest impacts in the Amazon region. Finally, the 

techniques developed and tested in the Sinop region were successfully applied to 

forty Landsat images covering other regions of the Brazilian Amazon. Standard 

fractions and NDFI images were computed for these other regions and both 

physically and spatially consistent results were obtained. An automated decision tree 

classification using genetic algorithm was implemented successfully to classify land 

cover types and sub-classes of degraded forests. The remote sensing techniques 

proposed in this dissertation are fully automated and have the potential to be used in 

tropical forest monitoring programs. 
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CHAPTER I: Introduction 

1.1 Overview and Research Significance 

The Brazilian Amazon rainforest covers about 40% of the remaining tropical 

forests in the world. Its role in keeping biodiversity, regulating regional climate and 

continental hydrological cycles, and storing carbon has been largely recognized 

(Fearnside 1996; Skole and Tucker, 1993). Over the past 30 years, the Brazilian 

Amazon rainforest, referred to as the Amazon from now on, has been rapidly 

converted to pastures and agricultural areas through deforestation (Fearnside 1989; 

Moran 1993; Alves and Skole, 1996). Until the year 2000, estimates of deforestation 

from Landsat images for the Amazon region showed that 587 thousand km2 had 

already been deforested. When added to the partial estimates for 2001 through 2003, 

the deforested area reaches about 650 thousand km2, with an average rate of forest 

loss of about 23,000 km2 yr-1 for this period (INPE, 2003).  

Tropical deforestation has a direct impact on world wide levels of biodiversity, 

and on regional hydrological, biogeochemical and climate cycles (e.g., Bazzaz, 

1998; Giambelluca, 2002; Houghton et al.,2000). Because of these environmental 

problems, Amazonian deforestation and its related impacts have called the attention 

of the scientific, environmental and policy making communities. For this reason, 

deforestation in the Amazon has been well documented, and monitoring programs 

that use satellite images to map deforestation have been conducted, at both national 

(e.g., PRODES – Monitoramento da Floresta Amazônica Brasileira por Satélite - by 
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the Brazilian space agency INPE) and international (e.g., TREES – Tropical 

Ecosystem Environment Observation by Satellites - by the Joint Research Center 

from the European Community) levels. 

Deforestation also fragments the landscape and creates more edges between 

forests and non-forested areas (Laurance et al., 2000). By 1988, the forest area at 

risk of edge effect (< 1 km from the forest edge) in the Amazon was about 150% 

larger than the total area deforested (Skole and Tuchker, 1993). Forest edges are 

affected by solar radiation, wind and agricultural fires (Cochrane and Laurance, 

2002). Forest inventory studies have shown that the biomass of forest edges 

decreases drastically within 100 meters of the edges (Laurance et al., 1998). The 

species diversity and composition also changes in the forest edges and the edge 

effect could contribute significantly to the emission of green house gases such as 

CO2 (Laurance et al., 1998). All of these factors lead to a more degraded forest 

environment along the forest edges. 

Unfortunately, deforestation and its associated forest fragmentation impacts are 

not the only threat to the integrity of the Amazon forests. Large forested areas have 

recently been impoverished by degradation caused by selective logging (Uhl and 

Vieira 1989; Uhl et al. 1997; Nepstad et al. 1999), forest fires (Uhl and Kauffman 

1990, Cochrane and Shultz, 1999; Nepstad et al., 1999), and forest fragmentation 

(Laurance et al. 2000). Forest degradation changes partially the original structure 

and composition of the forests by decreasing forest biomass (Cochrane and Schulze  
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1999; Gerwing and Farias 2000), creating favorable environments for non-native 

species (Vidal et al. 1997), and causing local species extinction (Martini et al. 1994). 

It has been estimated through field surveys and socio-economic interviews that 

up to 10,000-15,000 km2 are logged, 80,000 km2 are burned, and 38,000km2 are 

fragmented each year (Nepstad et al., 1999), making the area affected by forest 

degradation much larger than the area deforested annually in the Amazon. Estimates 

from Landsat images do not agree with the field estimates and with each other. For 

example, Santos et al. (2002) estimated from Landsat images that the area affected 

by selective logging in 1992 and 1996 were 1,000 km² and 1,571 km², respectively. 

Matricardi et al., (2001) presented significantly different estimates for these years – 

5,627 km² for 1992 and 9,449 km² for 1996. The differences in these satellite image 

estimates are associated with the methodology and mapping scale. The former 

estimates were based on visual interpretation of Landsat images at a 1:250,000 scale 

whereas the later one used a hybrid classification approach that combines automated 

classification (Souza Jr. and Barreto, 2000) and visual interpretation. 

As opposed to deforestation, degraded forests have not been monitored on a 

regular basis in the Amazon region. There exist, however, a few site-specific studies 

that characterize degraded forests at the field scale (e.g., Johns et al. 1996; Gerwing 

2002; Pereira et al., 2002). Remote sensing techniques to map the area affected by 

selective logging (e.g., Stone and Lefebvre 1998; Souza Jr. and Barreto 2000) and 

burned forests (Cochrane and Souza Jr., 1998) have also been proposed. 

Additionally, there are some attempts to correlate field inventory data on forest  
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degradation with remotely sensed data (Asner et al., 2002; Souza Jr. et al., 2003). 

The ecological field studies have shown that there are several levels of forest 

degradation due to different intensities and frequencies of selective logging, burning 

and fragmentation (Barros and Uhl 1995; Verissimo et al. 1995; Johns et al. 1996; 

Cochrane and Shultz, 1999; Gerwing 2002) which creates a continuum from intact 

forests to degraded forests. Thus, defining the boundaries between intact forests and 

the classes of degraded forests with remotely-sensed data becomes a challenge. This 

is one of the problems investigated in this Ph.D. research. 

Degraded forests change rapidly, usually within one to two years, due to canopy 

closure and invasion of non-native species such as lianas (Guariguata and Dupuy 

1997; Magnusson et al. 1999; Gerwing and Farias 2000). This rapid change in the 

degraded forest environment may cause degraded forests areas to be misclassified as 

intact forests, when using remote sensing data acquired with Landsat TM/ETM 

(Thematic Mapper/Enhanced Thematic Mapper) or SPOT 4 (Satellite Pour 

L'observation de la Terre). In addition, degraded forest can be converted to 

agricultural and pasture fields through deforestation, but the rate of conversion has 

not been investigated. These land cover change issues are another problem examined 

in this study. Finally, a generic image classification approach is proposed to map 

unambiguously forest degradation caused by anthropogenic and natural disturbances. 

Even though forest fragmentation is not an object of study in this dissertation, the 

remote sensing methods proposed here have the potential to map forest fragments and 

detect forest degradation along forest edges, such as forest burning. The research  



 

 5

issues presented here are also relevant to improving carbon flux models in the 

Brazilian Amazon. Forest degradation has a direct impact on biomass loss which, 

although partially compensated by regeneration, still results in a net loss of carbon 

(Gerwing, 2002). Therefore, mapping and quantifying forest degradation changes 

reduce the large uncertainty in carbon balance existing in the Brazilian Amazon 

(Houghton et al. 2001). 

This study was conducted in Sinop, Mato Grosso State (Figure 1), which is ideal 

for investigating the problems described above because it has a gradient of forest 

degradation classes, and because a robust time-series of Landsat imagery 

encompassing 20 years is available. Additionally, aerial videography and high 

spatial resolution satellite imagery is available for map accuracy assessment. The 

Landsat images were chosen because they offer enough spectral and spatial 

resolutions to monitor the Brazilian Amazon forests, and because historical data 

covering more than 30 years is available for the region. Finally, the image 

classification methods developed in this research were tested extensively through out 

the Amazon region. 

1.2 Objectives 

This research has five major objectives addressing one or more research 

questions. The objectives aim to: 

I) Characterize the spectral and temporal properties of degraded forests 

using Landsat TM/ETM+ images; the following questions were 

addressed: 
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a. What is the best set of spectral information to detect forest 

degradation? 

b. How long do the degraded forest ‘signatures’ persist? 

c. What is the optimal temporal resolution for mapping degraded 

forests? 

II) Develop a technique that combines spectral and spatial information to 

enhance unambiguously the detection and mapping of canopy damage 

caused by forest degradation. 

III) Characterize the spatiotemporal dynamics of degraded forests; the 

following questions were addressed in this objective: 

a. What is the fate of the degraded forests? 

b. What is the rate of forest degradation? 

c. How much of the degraded forests is converted by deforestation? 

IV) Develop a generic image processing and classification approach for 

monitoring the Amazon forests. 

V) Compare relative importance of selective logging across regions. 

1.3 Summary of the Chapters 

This section describes chapters II through VI of this dissertation. Chapter II 

focuses on research objective I. A statistical multi-temporal analysis is described to 

evaluate the capability of reflectance, vegetation indices (NDVI and SAVI), 

normalized difference infrared indices (NDII5 and NDII7) and fraction images,  
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derived from spectral mixture analysis (SMA), to distinguish Intact Forest from four 

classes of degraded forests: Non-mechanized Logging, Managed Logging, 

Conventional Logging and Logged and Burned. For this purpose, a robust time-

series data set of Landsat TM/ETM+ images was used in conjunction with forest 

inventory transects and data on forest disturbance history. 

Chapter III focuses on objective II, where a new spectral index, the Normalized 

Difference Fraction Index (NDFI), is proposed for enhanced detection of forest 

canopy damage caused by selective logging activities and associated forest fires. The 

NDFI synthesizes information from several fraction images derived from spectral 

mixture models. In addition, a contextual classification algorithm (CCA) is 

presented for accurate mapping of logging- and fire-derived canopy damages. The 

combination of the new NDFI spectral index with the CCA allows separation of 

canopy changes due to logging and associated forest fires from those caused by other 

natural disturbances. 

Chapter IV presents the results of the multi-temporal forest change analysis 

developed to address the research questions of objective III. A robust time-series 

Landsat imagery data set, encompassing 20 years, was used for this purpose. Chapter 

V focuses on objectives IV and V, and describes an automatic generic image 

processing and classification approach to monitor forest degradation in the Brazilian 

Amazon and provides a comparison of the relative importance of selective logging 

across regions. Finally, Chapter VI summarizes the main findings of each research 

objective and points out to future research directions. 
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CHAPTER II: Multi-temporal Analysis of Degraded Forests in 

the Southern Brazilian Amazon1 

2.1 Introduction 

Selective logging, fragmentation and forest burning are the main factors 

contributing to forest degradation of Brazilian Amazon. The major impacts of these 

anthropogenic disturbances include: decreasing forest biomass (Cochrane and 

Schulze, 1999; Gerwing 2002), creating favorable environments for non-native 

species (Vidal et al., 1997), and causing local species extinctions (Martini et al., 

1994). It has been estimated through field surveys and socio-economic interviews 

that up to 10,000-15,000 km2 are logged, 80,000 km2 are burned, and 38,000km2 are 

fragmented each year (Nepstad et al.,1999), making the area affected by forest 

degradation much larger than the area deforested annually in the Amazon, which 

averages around 18,000 km2year-1 (INPE, 2003).  

Several methodologies have been developed for mapping selectively logged and 

burned forests in the Brazilian Amazon using multispectral satellite images. 

Examples include visual interpretation (Watrin and Rocha, 1992), supervised 

classification (Stone and Lefebvre, 1998), soil fraction images obtained through 

spectral mixture analysis (SMA) (Souza Jr. and Barreto, 2000; Monteiro et al., 

2003), contextual clustering (Sgrenzaroli et al., 2002) and decision tree classification 

                                                 

1 Accepted for publication: Souza Jr., et al. (in press a). 
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(Souza et al., 2003). Additionally, efforts have been made to link forest biophysical 

properties of selectively logged forests with remotely sensed data (Asner et al., 2002, 

Souza Jr. et al., 2000). Burned forests have also been successfully mapped with non-

photosynthetic vegetation (NPV) (Roberts et al., 1993) fraction images in the eastern 

Amazon (Cochrane and Souza Jr., 1998). 

To date, few studies have employed multi-temporal data to map forest 

degradation, which is an important attribute for monitoring tropical forests (Lambin, 

1999). Single date or infrequent satellite acquisitions represent a potential source of 

error due to rapid canopy closure and regeneration of degraded forest, leading to 

misclassification of degraded forests as intact (Stone and Lefebvre, 1998). 

Furthermore, while several authors have used at least two dates to characterize 

selectively logged forests (Stone and Lefebvre, 1998; Souza and Barreto, 2000; 

Monteiro et al., 2003, Asner et al., 2002; Asner et al., 2004a), the same types of 

temporal analysis have not been applied to characterize burned forest dynamics.  

Currently, no study has used high temporal frequency images (i.e., at least one per 

year) to characterize change dynamics of the full range of forest degradation classes 

existing in the Amazon region. As a result, the optimal temporal resolution for 

mapping degraded forests has yet to be determined. In this study, I seek an 

understanding of the temporal dynamics of degraded forests. Specifically, the 

following questions are addressed: 1) how long do the degraded forest ‘signatures’ 

persist on Landsat images?; and 2) what is the optimal temporal resolution for 

mapping degraded forests with Landsat images? To answer these questions, changes  
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in reflectance, vegetation and infrared indices, and fraction images derived from 

SMA are evaluated over a chronosequence of well-characterized degraded forest 

types. Image analysis utilized a robust time series data set of Landsat TM/ETM+ 

images, encompassing 20 years of images acquired for every year. Field data 

included nineteen forest transect inventories covering all types of degraded forests 

found in the study area. 

2.2 Study Area and Forest Degradation Patterns 

The study area is located in the state of Mato Grosso, in the vicinity of Sinop and 

Cláudia sawmill centers (Figure 1). Transitional forest, between ‘cerrado’ and dense 

forest, is the predominant vegetation type in the region. The topography varies from 

flat to undulating terrain, on latosol soils, and the average annual precipitation is 

2,000 mm (RADAMBRASIL, 1981). 

Selective logging in this area is characterized by the harvesting of high quality 

timber species. The harvesting intensity ranges from 10 to 40 m3/ha and is 

predominantly unplanned (Monteiro et al., 2004). Three types of selectively logged 

forest were identified in the field: Non-mechanized Logging, Managed Logging and 

Conventional Logging forests (Table 1). At the field scale, logged forests are 

composed of three main environments: i) forest islands that were not disturbed 

because of poor access due to topography and rivers, or due to the lack of 

commercial timber species; ii) areas where the forest had been cleared to create roads 

for machine movements (skidders and trucks) and log landings to store the harvested 
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timber; and iii) canopy damaged forests (i.e., harvested areas and areas damaged by 

tree falls and machine movements). This pattern is similar to the logging pattern 

found in dense forest areas in the eastern Amazon (Verissimo et al., 1992; Johns et 

al., 1996), differing only in the harvesting intensity (30-40 m3/ha). 

Figure 1. Map of the study area showing the location of the forest transects 
used to extract satellite pixel data. 
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Table 1. Characterization of the forest classes defined at the field scale. 

Forest class Field Description 

Intact Forest Mature and undisturbed forest 
 

Non-mechanized 
logging 

Logged forest without the use of vehicles such as skidders 
and trucks, also known as traditional logging. Log 
landings, roads and skid trails are not built.  
 

Managed logging 

Planned selective logging where a tree inventory is 
conducted, followed by planned roads, log landings, skid 
trails and tree fall to reduce harvesting impacts. 
 

Conventional Logging 
Conventional unplanned selective logging using skidders 
and trucks. Log landings, roads and skid trails are built. 
  

Logged and burned 
Either non-mechanized or conventionally logged forests 
that have subsequently been damaged by forest fires. 
 

 

Forest burning is also frequent in this region, acting synergistically with selective 

logging to increase forest degradation damages (Monteiro et al., 2004). Selectively 

logged forests can burn when agricultural fires escape unintentionally from adjacent 

areas. Prolonged forest surface fires eventually reach the heat tolerance of trees and 

lianas, which can lead to tree mortality (Holdsworth and Uhl, 1997; Cochrane and 

Shultz, 1999). As a result, the forests become more degraded and more fuel is 

accumulated on the forest floor (Cochrane et al., 1999). A second forest surface fire 

event will likely burn the forest floor more severely and kill more trees (Table 1). 
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2.3 Data set  

2.3.1 Satellite Imagery Data 

Eighteen Landsat Thematic Mapper 5 (TM) images and three Landsat Enhanced 

Thematic Mapper (ETM+) images, acquired between June 1984 and July 2004, were 

used in this study (Table 2). The images were acquired through the Tropical Rain 

Forest Information Center (TRFIC) and the Brazilian Space Agency (INPE). 

Table 2. Landsat TM/ETM+ data used in this study (orbit/point = 226/068). 

Year Landsat Sensor Month, Day Source 
1984 TM5 June, 14 INPE 
1985 TM5 July, 3 INPE 
1986 TM5 August, 7 INPE 
1987 TM5 June, 25 INPE 
1988 TM5 August, 11 INPE 
1989 TM5 August, 31 INPE 
1990 TM5 August, 02 INPE 
1991 TM5 July, 02 INPE 
1992 TM5 July, 25 INPE 
1993 TM5 August, 26 INPE 
1994 TM5 July, 02 INPE 
1995 TM5 June, 13 INPE 
1996 TM5 July, 01 TRFIC 
1997 TM5 August, 5 INPE 
1998 TM5 June, 6 INPE 
1999 ETM+ August, 19 TRFIC 
2000 TM5 June, 26 INPE 
2001 ETM+ August, 8 INPE 
2002 ETM+ July, 10 INPE 
2003 TM5 August, 6 INPE 
2004 TM5 June, 5 INPE 

 1 Brazilian Space Agency 
 2Tropical Rain Forest Information Center 
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2.3.2 Forest Transect Inventory 

Nineteen forest transect inventories were conducted in the study area (Figure 1; 

Tables 3). For the purposes of this study, information about logging and fire 

histories, ground cover, canopy cover and biomass was used to classify the forest 

degradation classes found at the field scale into four degradation classes: Non-

mechanized Logging, Managed Logging, Conventional Logging and Logged and 

Burned (Tables 1 and 3).  The forest inventories were conducted following the field 

protocol proposed by Gerwing (2002) to characterize degraded forest in the eastern 

Amazon. This method has been successfully applied to characterize biophysical 

properties and dynamics of degraded forests in transitional forests (Monteiro et al., 

2004).  

All trees with Diameter at Breast Height (DBH) greater than 10 cm were mapped 

along a 10 m by 500 m transect. In addition, ten sub-parcels (10 m x 10 m) were 

created every 50 meters along each transect. All trees where mapped within the sub-

parcels and ground cover and canopy gaps were estimated using a hemispherical lens 

and densiometer. Above ground biomass was estimated using allometric equations 

available in the literature (Gerwing, 2002; Monteiro et al., 2004), adapted 

specifically by Gerwing (2002), for degraded forests and estimating vine biomass. 

 

2.4 Methodology 
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Table 3. Classification and disturbance history of the forest transects of the study area. 

Class Transect 
Number Latitude Longitude 

Year of the 
First Forest 
Degradation 

Event 

Time since 
first 

Logging 
(years) 

Time since 
last 

Logging 
(years) 

Number 
of Times 
Logged 

Volume 
Harvested 

(m3/ha) 

Number 
of times 
Burned 

Intact 11 -11.546110 -54.933040 - - - - - - 

Intact 12 -11.540960 -54.931850 - - - - - - 

Intact 13 -11.540550 -54.923930 - - - - - - 

Intact 14 -11.579852 -55.200937 - - - - - - 

Non-mechanized Logging 1 -11.407170 -55.011950 1999 2 2 1 10 - 

Non-mechanized Logging 2 -11.432190 -55.095040 1996 5 5 1 10 - 
Non-mechanized Logging 6 -11.391950 -55.016940 1999 2 2 1 10 - 
Non-mechanized Logging 9 -11.443970 -54.924020 1990 11 10 2 25 - 
Non-mechanized Logging 10 -11.443660 -54.914810 1987 14 10 2 25 - 

Managed Logging 15 -11.5910674 -55.1730850 2000 4 4 1 38 - 
Managed Logging 16 -11.5068618 -55.2838944 2001 3 3 1 32 - 
Managed Logging 17 -11.555747 -55.205766 2002 2 2 1 40 - 
Managed Logging 18 -11.562731 -55.284380 2003 1 1 1 40 - 
Managed Logging 19 -11.588599 -55.302101 2004 0 0 1 25  
Conventional Logging 7 -11.721690 -54.866760 1997 4 4 1 10 - 
Conventional Logging 8 -11.697990 -54.915840 1993 8 8 1 10 - 
Logged and burned 3 -11.367190 -55.010760 1990 2 2 1 25 1 
Logged and burned 4 -11.376690 -55.013770 1999 2 2 1 25 1 
Logged and burned 5 -11.342810 -55.047980 1999 2 2 1 25 1 

15 
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2.4.1 Pre-Processing: image registration, atmospheric correction 

and inter-calibration 

The images were registered and radiometrically inter-calibrated in order to allow 

the detection of forest change over time. The Landsat ETM+ image acquired in 1999 

was georeferenced using twenty-five control points extracted from NASA GeoCover 

2000 Mosaic (https://zulu.ssc.nasa.gov/mrsid/). Next, the 1999 georectified Landsat 

image was used as the reference image to register the images acquired on the other 

dates (Table 2). The registration was based on the triangulation algorithm and 

nearest neighborhood resampling available in The Environment for Visualizing 

Images 4.0 software (ENVI; Research Systems, Boulder, CO), using at least 14 

image control points. The Root Mean Squared (RMS) varied from 0.53 to 0.97, 

which assures that the changes detected over time were not contaminated by 

misregistration (Verbyla and Boles, 2000). 

The Landsat ETM+ image from 1999 was first radiometricaly corrected using 

the gains and offset provided in the image metafile. Next, an atmospheric correction 

was performed using Atmospheric Correction Now 4.0 (ACORN:Analytical Imaging 

& Geophysics, Boulder, CO). Visibility and water vapor parameters of the 

atmospheric correction model were determined by a trial-and-error sensitivity 

analysis of a dark object reflectance (a lake). The final parameters were estimated 

when the expected reflectance values of the dark object were found. The fixed water 

vapor was 40 millimeters, and image atmosphere visibility 25 kilometers. 
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The other images (Table 2) were inter-calibrated to the reflectance image using a 

relative radiometric calibration approach (Roberts et al., 1998; Furby and Campbell, 

2001).  This technique assumes that the atmosphere is uniform over the study area, 

and that invariant ground targets can be found over time. Invariant targets 

representing forest, second growth, green pasture, bare soil and water were selected 

for each image pair formed by the 1999 reference image and an uncalibrated image. 

A linear regression was estimated using the pixel mean values, extracted from a 3 by 

3 pixel area, of the invariant targets for each band. These coefficients normalize the 

uncalibrated images to the 1999 reference image, converting Digital Numbers of the 

uncalibrated images to reflectance. 

2.4.2 Endmember Selection 

Image endmembers representing vegetation, soil and NPV were extracted from 

the reference reflectance image. Shade was assigned zero percent reflectance at all 

wavelengths. The pixel-purity-index (PPI), available in ENVI 4.0 (Boardman et al., 

1995) was used to identify image endmember candidates. Five image subsets 

(500x500 pixels), representing the variety of land cover types found in the images, 

were used as input for the PPI algorithm. The PPI result was used to identify the 

pixel location in the original image and extract the spectral curves of these pixels. 

The final image endmembers were selected based on the pixel location in the 

Landsat reflectance spectra with the aid of an n-dimensional visualization tool 

available in ENVI. The pixels located at the extremes of the data cloud of the 

Landsat spectral space were selected as candidate endmembers. The final 
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endmembers were selected based on the spectral shape and image context (e.g., soil 

spectra are mostly associated with unpaved roads and NPV with pasture having 

senesced vegetation).   

2.4.3 Spectral Mixture Analysis 

Spectral Mixture Analysis – SMA – (Adams et al., 1993) assumes that the image 

spectra are formed by a linear combination of n pure spectra, such that: 

R
b
 = ∑

=

n

i 1
Fi Ri,b

 + εb    (1) 

for 

i

n

=
∑

1
 F

i
 = 1      (2) 

where R
b is the reflectance in band b, Fi the fraction of endmember i, R

i,b is the 

reflectance for endmember i, in band b, and εb is the residual error for each band. 

The SMA model error is estimated for each image pixel by computing the RMS 

error, given by: 

RMS =  [n-1∑
=

n

b 1

εb]
1/2     (3) 

Mixture models were applied to each date using the inter-calibrated image 

endmembers, except the reference image, which was the one used to extract the 

endmembers. The mixing model results were evaluated as proposed by Adams et al. 

(1993). First, the RMS images were inspected and models with RMS values greater 

than 5% were discarded from the fraction change analysis. Next, fraction images 
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were evaluated and interpreted in terms of field context and spatial distribution. For 

example, high abundance of soils is mostly associated with dirt roads and high NPV 

is usually found in pastures. Finally, the histograms of the fraction images were 

inspected to quantify the percentage of pixels lying outside the range of zero to 

100% and to evaluate fraction value consistency over time (i.e., intact forest shows 

approximately stable values over time). Only models with at least 98% of the values 

within zero to 100% and those that showed mean fraction value consistency over 

time were kept. For the models that did not pass one of these tests new invariant 

targets were collected to improve the image inter-calibration coefficients and a new 

SMA model was run until the criterion was reached. 

2.4.4 Vegetation and Near Infrared Indices 

Two vegetation indices and two normalized difference infrared indices (NDII) 

were selected for assessing if it was possible to distinguish Intact Forest from the 

degraded forest classes. The vegetation indices chosen were the normalized 

difference vegetation index (NDVI; Rouse et al., 1974), and the soil adjusted 

vegetation index (SAVI; Huete, 1988). These vegetation indices use reflectance 

measurements from Landsat band 3 (ρb3) and band 4 (ρb4), and are computed with 

the following equations: 

   NDVI = (ρb4 – ρb3)/( ρb4 + ρb3)   (4) 

   SAVI = 1.5*(ρb4 -ρb3)/( ρb4 +ρb3+0.5)  (5) 
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The normalized difference infrared indices (NDII) chosen are the ones proposed 

by Hunt and Rock (1989) to identify forest disturbances associated with water 

content. These NDII indices are computed using Landsat band 4 (ρb4), band 5 (ρb5) 

and band 7 (ρb7), and are given by: 

NDII5 = (ρb4 – ρb5)/( ρb4 + ρb5)   (6) 

NDII7 = (ρb4 – ρb7)/( ρb4 + ρb7)   (7) 

2.4.5 Class Separability and Temporal Change Analyses 

Using the information on logging and fire histories acquired during field research 

and the Landsat time-series, it was possible to identify the date prior to degradation, 

representing the image condition of Intact Forest. Next, reflectance and fractions of 

GV, NPV, Shade and Soil were extracted using 30 pixels selected randomly within a 

buffer region of 5 pixels along each transect. Random pixels located in logging roads 

and log landings were excluded from the analysis because changes from Intact 

Forest to clear-cut are relatively easier to identify (Souza Jr. and Barreto, 2000; 

Monteiro et al., 2003). Less than one percent of the random pixels were excluded 

following this criterion. The vegetation and infrared indices were computed using 

the reflectance values extracted from the 30 randomly selected pixels. This 

procedure allowed us to build a time-series data set of reflectance, vegetation and 

infrared indices and fraction values covering the time prior to degradation (i.e, 

degradation age equals zero) to up to four years after the event. 
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The next steps were to perform a class separability and temporal change analyses 

based on reflectance, vegetation and infrared indices, and fractions variables. The 

Tukey test (Ott, 1992), available in the R Language (http://www.r-project.org/), was 

used to evaluate if the Intact Forest and the forest degradation classes could be 

separated from each other, and to define for how long the degradation classes could 

be distinguished from the Intact Forest class over a period of four years. The Tukey 

test was run at a 99% confidence interval (P < 0.01). 

The Tukey test performs a multicomparison of the population means of the Intact 

Forest and degraded forest classes, i.e., tests the mean of a population against the 

mean of each other population. For the purpose of the class separability analysis, the 

populations are represented by the data acquired prior to the degradation event 

representing Intact Forest, and the year right after degradation representing the 

degraded forest classes (Non-mechanized Logging, Managed Logging, Conventional 

Logging and Logged and Burned). For the purpose of the temporal statistical 

analysis, the populations are represented by a time variable, encompassing the year 

prior to the degradation process (i.e., Time=0 means Intact Forest) up to four years 

after degradation (Time=1,…, 4). 

Because the Tukey test requires normally distributed samples, a data 

transformation was applied when necessary by computing the arcsine of the square-

root of the data variable (Hogg and Graig, 1994) prior to statistical analysis. The 

results of the multicomparison statistical analysis are reported only for the 

comparison of the year prior to the degradation event against each other year. The 
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Tukey test also allowed us to determine how many years a significant difference 

between Intact Forest and the degradation classes persisted over time. 

2.5 Results  

2.5.1 First Year Forest Degradation Separability 

Four classes of degraded forests were identified and characterized at the field 

scale: Non-mechanized Logging, Managed Logging, Conventional Logging and 

Logged and Burned (Table 1). The reflectance, vegetation and infrared indices and 

fraction means of Intact Forest were compared relative to each class of degraded 

forest, and between the other degraded forest classes. Figures 2 and 3 show the 

results of the class separability analysis, discussed for each type of data set below 

one year after the event (Also, Time=1 in Table 4). 

a) Reflectance 

Mean spectral reflectance +/- one standard deviation is plotted for Intact Forest 

and the degradation classes in Figure 2a. Qualitative inspection of these spectra 

indicates high overlap in the Landsat spectral bands making the distinction of these 

classes challenging. 

Statistically, the Tukey test (P<0.01) revealed that spectral differentiation of 

Managed Logging, Conventional Logging and Logged and Burned classes from 

Intact Forest was possible in the visible part of the spectrum (bands 1-3) for the year 

the degradation took place (Time=1; Table 4). Non-mechanized Logging, however,  
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showed only a significant change from Intact Forest in band 1. Overall, the 

differentiation among the other degraded forest classes was also possible in the 

visible region, except between Non-mechanized and Managed Logging, which did 

not show significant change in reflectance in the visible region. 

According to the statistical test, it was possible to differentiate Intact Forest from 

the degraded forest classes, and between each other degraded forest classes, in the 

near- and mid-infrared spectral region using one or two bands. Non-mechanized 

Logging could not be distinguished in this part of the spectrum from Intact Forest. In 

the infrared region, only Managed Logging and Logged and Burned classes showed 

significant statistical differences from Intact Forest in bands 3, 4 and 5. Conventional 

Logging class showed a significant difference only in band 5 (Figures 2a; Table 4). 

A general trend of increasing the mean forest reflectance (1-2%) as a function of 

degradation intensity was observed in the visible part of the spectrum (Figure 3a). In 

the near-infrared region, band 4 showed a decrease (1-3%) in mean reflectance as a 

function of degradation intensity, whereas in the short-wave-infrared mean 

reflectance increased (1-3%; Figure 3a). 

b) Vegetation Indices 

The spectral vegetation indices, which rely on high spectral contrast between red 

and near-infrared bands, did not differentiate Non-Mechanized Logging from Intact 

Forest, due to a high overlap between these classes in these two spectral regions 

(Figure 2a-b; Table 4). However, Managed Logging, Conventional Logging and 

Logged and Burned classes showed a significant difference from Intact Forest and 
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between each other with NDVI and SAVI (Figure 2b; Table 4). Nonetheless, no 

significant difference was observed between each other degraded forest classes. 
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Figure 2. Means and standard deviations (vertical error bar) of intact forest 

and degraded forests classes as measured by Landsat bands: (a) reflectance; (b) 
vegetation and infrared indices; and (c) fraction images. 

 

 

The infrared indices showed a general decreasing trend as a function of 

degradation intensity (Figures 2b and 3b). Non-mechanized Logging could not be 

distinguished from Intact Forest and from the other degraded forest classes. 

However, Managed Logging, Conventional Logging and Logged and Burned 

showed significant differences from Intact Forest and from each other with the 

Tukey test (Table 4). 
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Table 4. Means and standard deviation of fractions, reflectance and indices of forest degradation classes through time. 
Numbers in bold face denote significant differences between Intact Forest (Time=0) and degraded forest classes 
(Time=1,…, 4) at P< 0.01 utilizing a Tukey test. 
(a) 

Class Time GV 
(%) 

NPV 
(%) 

Soil 
(%) 

Shade 
(%) 

B1 
(%) 

B2 
(%) 

B3 
(%) 

B4 
(%) 

B5 
(%) 

B7 
(%) NDV I SAVI NDII5 NDII7 

0 39 8 2 52 0.63 2.52 1.38 25.93 13.33 4.27 0.90 1.35 0.32 0.72 
 (5) (2) (1) (4) (2.1) (0.5) (0.5) (2.3) (1.4) (0.7) (0.03) (0.05) (0.04) (0.04) 

1 41 6 3 53 1.83 2.64 1.47 26.74 13.55 4.20 0.90 1.34 0.33 0.73 
 (5) (3) (2) (5) (0.6) (0.5) (0.5) (2.4) (1.4) (0.9) (0.04) (0.06) (0.06) (0.05) 

2 43 7 2 48 2.36 3.31 1.84 28.64 14.07 5.07 0.88 1.32 0.34 0.70 
 (8) (3) (1) (6) (3.1) (1.3) (0.7) (3.5) (1.3) (1.0) (0.04) (0.06) (0.07) (0.05) 

3 42 6 3 50 0.63 2.54 1.20 26.19 13.72 4.45 0.91 1.37 0.31 0.71 
 (5) (2) (1) (4) (2.0) (0.3) (0.6) (2.2) (1.3) (0.8) (0.04) (0.06) (0.04) (0.04) 

4 47 5 1 46 1.28 2.63 1.39 27.42 13.44 4.37 0.90 1.36 0.34 0.73 

N
on

-M
ec

an
iz

ed
 

Lo
gg

in
g 

  

  (6) (2) (1) (7) (0.5) (0.7) (0.7) (2.2) (1.4) (0.6) (0.04) (0.06) (0.04) (0.03) 
(b) 

Class Time GV 
(%) 

NPV 
(%) 

Soil 
(%) 

Shade 
(%) 

B1 
(%) 

B2 
(%) 

B3 
(%) 

B4 
(%) 

B5 
(%) 

B7 
(%) NDV I SAVI NDII5 NDII7 

0 40 5 2 50 1.62 2.70 1.47 27.01 13.41 4.26 0.90 1.34 0.34 0.73 
 (2) (3) (1) (3) (0.5) (0.3) (0.4) (1.4) (1.2) (0.6) (0.03) (0.04) (0.04) (0.04) 

1 40 6 3 51 2.26 2.87 1.92 25.49 14.77 5.16 0.86 1.29 0.27 0.66 
 (6) (2) (1) (4) (0.5) (0.4) (0.5) (2.1) (1.5) (0.9) (0.04) (0.06) (0.06) (0.06) 

2 47 6 2 45 1.66 2.66 1.53 25.97 13.76 4.61 0.89 1.33 0.31 0.70 
 (6) (2) (1) (5) (0.7) (0.5) (0.6) (1.9) (1.3) (0.7) (0.04) (0.06) (0.05) (0.05) 

3 48 5 3 45 1.09 2.49 1.41 26.53 13.47 4.54 0.90 1.35 0.33 0.71 
 (4) (2) (1) (3) (0.5) (0.6) (0.7) (1.6) (1.7) (0.8) (0.05) (0.07) (0.05) (0.05) 

4 40 6 3 50 1.51 2.88 1.80 26.26 13.38 4.44 0.87 1.31 0.33 0.71 

M
an

ag
ed

 
Lo

gg
in

g 
  

  (5) (2) (1) (4) (0.4) (0.5) (0.5) (1.8) (1.5) (0.8) (0.03) (0.05) (0.05) (0.04) 
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Table 4. Cont. 
(c) 

Class Time GV 
(%) 

NPV 
(%) 

Soil 
(%) 

Shade 
(%) 

B1 
(%) 

B2 
(%) 

B3 
(%) 

B4 
(%) 

B5 
(%) 

B7 
(%) NDV I SAVI NDII5 NDII7 

0 45 3 2 50 1.72 2.11 0.98 24.62 12.72 3.92 0.92 1.38 0.33 0.73 
 (3) (2) (1) (3) (0.7) (0.3) (0.5) (2.1) (1.1) (0.7) (0.02) (0.04) (0.05) (0.05) 

1 38 10 4 52 1.50 3.34 2.80 24.65 16.19 6.21 0.88 1.31 0.27 0.66 
 (9) (4) (3) (4) (1.9) (1.3) (1.8) (2.8) (3.6) (2.6) (0.11) (0.16) (0.13) (0.14) 

2 38 5 3 54 0.62 2.63 1.70 25.66 14.36 4.95 0.89 1.34 0.31 0.70 
 (7) (2) (2) (5) (1.9) (0.6) (0.9) (2.9) (2.4) (1.5) (0.05) (0.08) (0.06) (0.07) 

3 35 8 3 54 1.08 2.33 1.42 25.87 13.48 4.42 0.92 1.37 0.34 0.73 
 (6) (2) (2) (5) (0.5) (0.7) (0.8) (2.7) (2.0) (1.5) (0.05) (0.07) (0.06) (0.07) 

4 41 5 3 52 2.45 2.58 1.56 26.66 13.99 4.85 0.87 1.31 0.30 0.69 

C
on

ve
nt

io
na

l 
Lo

gg
in

g 
  

  (5) (2) (1) (4) (0.4) (0.6) (0.8) (2.6) (2.1) (1.3) (0.03) (0.05) (0.04) (0.05) 
(d) 

Class Time GV 
(%) 

NPV 
(%) 

Soil 
(%) 

Shade 
(%) 

B1 
(%) 

B2 
(%) 

B3 
(%) 

B4 
(%) 

B5 
(%) 

B7 
(%) NDV I SAVI NDII5 NDII7 

0 37 5 1 57 1.40 2.46 1.33 26.10 13.66 4.50 0.90 1.36 0.32 0.71 
 (5) (2) (2) (4) (1.9) (0.5) (0.7) (2.1) (2.4) (1.5) (0.04) (0.06) (0.07) (0.07) 

1 25 11 7 56 1.95 3.01 2.29 24.38 15.96 6.06 0.83 1.24 0.21 0.61 
 (7) (3) (3) (3) (1.1) (0.8) (1.4) (2.3) (3.4) (2.6) (0.10) (0.15) (0.12) (0.14) 

2 36 8 5 51 2.72 3.32 2.84 23.36 17.73 7.41 0.78 1.17 0.14 0.52 
 (4) (2) (2) (3) (0.5) (0.6) (0.9) (2.9) (2.7) (2.0) (0.08) (0.12) (0.10) (0.12) 

3 51 8 2 40 1.88 2.83 1.82 26.59 16.41 5.91 0.87 1.30 0.24 0.63 
 (5) (2) (1) (4) (0.6) (0.4) (0.6) (3.5) (2.1) (1.0) (0.05) (0.07) (0.07) (0.07) 

4 48 6 3 43 1.14 2.64 1.50 28.62 15.48 5.16 0.90 1.35 0.30 0.69 

Lo
gg

ed
 a

nd
 

Bu
rn

ed
 

  

  (5) (2) (1) (5) (0.5) (0.6) (0.7) (3.3) (1.8) (0.7) (0.05) (0.07) (0.04) (0.04) 
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Figure 3. Delta change of (a) reflectance, (b) vegetation and infrared 

indices and (c) fraction images, computed by subtracting the mean value of 
Intact Forest from the mean value of each degraded forest class. 
 

c) Fraction Images 

The GV fraction was not significantly different between Intact Forest and Non-

mechanized Logging and Managed Logging. These three classes, however, were 

significantly different from Conventional Logging and Logged Burned (Figure 2c). 

Conventional Logging and Logged Burned could also be separated from each other 

with the GV fraction. The NPV; Soil and Shade fractions showed results similar to 

the GV fraction, except that the Shade fraction showed a significant difference 
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between Intact Forest and Non-mechanized Logging, and Soil showed a significant 

difference between Intact Forest and Managed Logging (Table 4; Figure 2c). 

The fraction images showed a higher absolute change between Intact Forest and 

the forest degradation classes (Figures 2c and 3c), when compared to the changes 

detected by the reflectance bands and the vegetation and infrared indices (Figure 2a-

b; Figure 3a-b). The GV fraction decreased non-linearly with degradation intensity 

(Figure 3c). A significant change in mean of about 3% was observed between Intact 

Forest and Conventional Logging class, and of 15% between Intact Forest and 

Logged and Burned (Figure 3c; Table 4).  

The Shade fraction changed less than 5% from Intact Forest to the most degraded 

forest class – Logged and Burned. Changes in means and statistically significant 

differences were observed in NPV for Conventional Logging and Logged and 

Burned classes. The mean NPV fraction increased by about 5% between the Intact 

Forest and the Conventional Logging classes, and between the Intact Forest and 

Logged and Burned classes (Figures 3c; Table 4). The Soil fraction showed a similar 

change, but smaller than the change exhibited by the NPV fraction. When NPV and 

Soil are combined, the changes between Intact Forest and the degraded forest classes 

become much greater (Figure 3c). 

2.5.2 Multi-year Forest Degradation Separability 

The temporal analyses covered the year prior to the degradation process (i.e., 

Intact Forest; Time=0) up to four years after the degradation process (Time=1,…,4). 

Time represents the number of years after the last forest degradation event took 
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place. Finally, the mean values, in Table 4 faced in bold indicate statistically 

significant changes from the Intact Forest condition (Time=0) relative to any other 

year (Time=1,…, 4) obtained with the Tukey test. 

a) Reflectance and Indices 

Two years after degradation, Non-mechanized Logging showed an increase in 

mean reflectance in the visible and infrared regions, significantly different from the 

Intact Forest mean reflectance (Table 4a). This increase in reflectance generated 

changes in the vegetation and infrared indices in the second year, but only the 

changes in means of NDVI and SAVI were statistically significant for Non-

mechanized Logging in the second year. No significant changes in reflectance and in 

the indices were observed for the third and fourth years in Non-mechanized 

Logging, except for band 4, which showed a significant increase (Table 4a). 

Managed Logging showed only two significant temporal changes in mean 

reflectance for bands 1 and 4, in the third and second years (Table 4b). Neither the 

vegetation indices nor the infrared indices showed temporally significant changes in 

mean values according to the Tukey test results for Managed Logging (Table 4b). 

The Logging class showed some significant temporal changes in mean 

reflectance and mean index values. Bands 2, 3, 5 and 7 showed significant 

differences from Intact Forest two years after logging took place (Table 4c). 

Significant differences were observed in bands 1 and 4, for three and four years after 

logging, due to an increase in mean values that might be associated with forest 



 

 32

regeneration. Finally, only the vegetation indices showed significant changes due to 

logging disturbance for the fourth year (Table 4c). 

Changes in Logged and Burned areas were significant for most of the reflectance 

bands for all the years following the degradation process. Among the indices, only 

the NDII5 index showed a significant difference between Intact Forest and Logged 

and Burned in the fourth year (Table 4d).  

b) Fraction Images 

Non-mechanized Logging showed a significant increase in GV mean from the 

Intact Forest mean in the second, third and fourth years after logging. A significant 

decrease in NPV mean, relative to the Intact Forest mean, occurred in the third and 

fourth years for this class. The Shade fraction showed a significant decrease in mean 

in the second and fourth years (Table 4a). 

Managed Logging showed a significant change between Intact Forest and Non-

mechanized Logging for the GV fraction in the second and fourth years. The results 

indicate that no significant change in GV and Shade means occurred in the first year, 

when the degradation took place. However, an increase in GV and a decrease in 

Shade were observed in the second and third years, which is likely to be associated 

with forest canopy closure after logging. The NPV fraction, however, did not show 

any significant change between Intact Forest and Managed Logging for all the years. 

Finally, Soil and Shade fractions were significantly different between these two 

classes for all the years (Table 4b). 



 

 33

The Conventional Logging class showed a significant difference in mean for GV, 

NPV and Shade fractions for all the years. The Soil fraction was significantly 

different from Intact Forest only in the first year (Table 4c). 

The Logged and Burned class is affected by two degradation processes – 

selective logging and burning. Because these are heavily degraded forest 

environments, significant changes in all fractions were revealed with the Tukey test 

(Table 4c). Mean GV fraction decreased after burning followed by an increase in GV 

mean in the following years. The NPV mean showed an opposite pattern compared 

to GV mean, with an increase in mean in the first year followed by a decrease in 

NPV mean in the subsequent years. In the second year after burning, the Shade 

fraction became important for distinguishing Intact Forest from Logged and Burned 

forest due to a decrease in mean value (Table 4c). 

2.5.3 Optimal Temporal Resolution 

Non-Mechanized Logging is more difficult to distinguish from Intact Forest than 

the other types of disturbances in the first year. GV and Shade fractions varied 

inversely over time for this class (i.e., an increase in GV is followed by a decrease in 

Shade; Figure 4a). Because this type of selective logging does not greatly impact the 

forest in the year when the forest disturbance took place, the significant changes 

observed might be associated with canopy closure after logging. Therefore, the 

optimal temporal resolution for detecting this type of logging is between two to three 

years, when canopy closure is more likely to happen, reducing canopy roughness 

and, as a result, decreasing shade content. But, because this type of low impact 
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logging does not build roads and log landings, its differentiation from other types of 

disturbances (e.g., blow down winds) becomes much harder using the forest 

regeneration signal. 

Managed Logging is more likely to be detected with reflectance bands and 

vegetation and infrared indices in the first year. The Soil fraction was the only SMA 

result that showed significant change in the first year for this class. However, a 

higher magnitude change in GV and shade fractions means were observed in 

Managed Logging when compared with the changes observed in Non-mechanized 

Logging (Figure 4a-b). Therefore, the regeneration of Managed forests is more likely 

to be detected in the second and third years than the actual low disturbance in the 

first year. In addition, the roads and log landing built in managed forests can be used 

to differentiate Managed Logging from other types of forest disturbances. After the 

fourth year no change relative to Intact Forest can be observed. 

Conventional Logging and Logged and Burned areas can be detected in the first 

year with all reflectance bands, indices and fractions. However, regeneration 

changes in the Conventional Logging areas, in the subsequent years, are more likely 

to be detected using fraction images. The Conventional Logging class can be 

distinguished from Intact Forest in the first year because of a decrease in GV and an 

increase in NPV (Figure 4c). After the second year, an increase in GV and decrease 

in NPV is observed. However, the temporal time-series shows a second decrease in 

GV and increase in NPV means in the third year (Figure 4c). Such a pattern may be 

due to a second harvesting operation (recurrent logging), which is common in the 

study area. The temporal fraction pattern of Logged and Burned areas shows a more 
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dramatic decrease in GV and increase in NPV mean values in the first year after 

degradation (Figure 4d). The NPV signal is still high in the second year and after the 

third year GV increases and NPV decreases. Therefore, the optimal temporal 

resolution for detecting disturbances in Conventional Logging and Logged and 

Burned environments is one year; regeneration, however, can be detected in Logged 

and Burned areas up to four years 

The time-series results indicate that intensive and unplanned logging, and 

logging followed by burning can be detected in the first year. Up to the second year, 

detection becomes a challenge due to forest regeneration. Less intensive forest 

impacts, such as those caused by non-mechanized logging and managed logging are 

more difficult to detect even in the year after degradation took place. The 

regeneration signal of these low intensity types of logging becomes significant in the 

second and third years. But, the detection of logging infrastructure is important to 

distinguish this low impact logging from other types of forest disturbance. 

2.6 Discussion 

2.6.1 Degraded Forest Mapping Potential 

The fraction images derived from SMA have more advantages in differentiating 

types of degraded forests than reflectance data and vegetation and infrared indices. 

First, the fraction images showed higher absolute changes in 
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Figure 4. Change in fractions mean fraction values trough time for: (a) Non-
mechanized Logging, (b) Managed Logging, (c) Conventional Logging and (d) 
Logged and Burned.
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mean values between Intact Forest and the other degraded forest classes than the 

other types of data. Second, temporal changes were better revealed using fraction 

images. Third, the fractions have a more intuitive physical link with field data. 

Additionally, fraction images have been successfully used to map selective logged 

and burned forest areas. For example, Cochrane and Souza Jr. (1998) reported that 

the NPV fraction showed the greatest separability of sub-classes of burned forests 

and Souza Jr. et al. (2003) demonstrated that the NPV fraction was an important 

variable for differentiating Intact Forest from degraded forest in a decision tree 

classifier. Finally, other studies have shown that damage associated with selective 

logging is difficult to identify and map using Landsat reflectance data (Stone and 

Lefebvre, 1998; Asner et al. 2002). 

Fraction temporal changes revealed in the statistical comparisons described 

above can be observed visually using a color composite of fraction images (Figure 

5). When displaying NPV, GV and Soil as Blue, Green and Red, respectively, it is 

possible to identify and potentially map degraded forest classes. NPV is the most 

prominent fraction change in the degraded forest environment and is easily observed 

in this type of color composite.  

One important issue that should be taken into consideration when interpreting 

forest degradation signatures in this type of color composite is the time of image 

acquisition versus the time when degradation event took place. For example, the 

Managed Logging areas of Transects 15 and 17, do not exhibit an NPV signature in 

1999, because no selective logging had taken place in that year (Figure 5a). In the 
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following year, only Transect 15 showed an increase in NPV due to selective 

logging, but no increase in NPV was observed in Transect 17 (Figure 5b). To 

explain why this is possible one must consider the time of both harvesting and image 

acquisition.  The Landsat image for the year 2000 was acquired immediately after 

harvesting took place in the area of Transect 15, but before harvesting occurred near 

Transect 17 (Figure 5b). In the next image, acquired in 2001, the NPV signal in 

Transect 15 area is no longer as visible, but the NPV content has increased in 

Transect 17 relative to the images acquired in 1999 and 2000. This type of temporal 

lag between image acquisition and harvesting is important for building change 

detection classifiers for mapping degraded forest. 

The NPV fraction signature was more visible and persistent in Logged and 

Burned environments (Figure 5e-h). In the area of Transects 3, 4 and 5, selective 

logging took place in 1999 followed by intensive forest burning in 2000. NPV 

increased more drastically in burned areas and its signature was still visible in 2001. 

In 2002, the NPV signature disappeared, followed by an increase in GV and 

decrease in Shade. 

2.6.2 Linking Field Measurements with Fraction Images 

Forest biophysical properties acquired with the forest transect for Intact Forest 

and the degraded forest classes are summarized in Table 5. The results obtained with 

the SMA agree with the field measurements. GV fraction tends to decrease as a 

function of degradation intensity. At the field scale this change in GV can be 

explained by a decrease in the amount of intact vegetation and canopy cover.
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Figure 5. Examples of forest degradation processes and temporal changes as 
detected using fraction images derived from SMA (Red = Soil, Green = Green 
Vegetation, Blue = NPV).  
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The field results show that the mean of intact vegetation proportion drops from 95% 

in the Intact Forest to 50% in Logged and Burned areas (Figure 2c; Table 5). The 

canopy cover also decreased from Intact Forest (93%) to Logged and Burned (67%). 

The proportion of forest area affected by disturbed soil and wood debris 

increases as a function of the degradation intensity. This pattern also agrees with the 

pattern captured by Soil and NPV fractions (Figure 2c; Table 5). At the field level all 

these ground disturbances are significant for differentiating Intact Forest from the 

degradation classes. However, because the ground cover is not always imaged by 

satellite sensors, the distinction of these classes from Landsat is not always possible 

using these field properties. 

NPV fraction has an inverse relationship with biomass measurements made in 

degraded forests in the Eastern Amazon (Souza et al., 2003). In the study area, the 

biomass estimates obtained with the field transects also show a trend in decreasing 

biomass with an increase in NPV as a function of degradation intensity (Figure 2c; 

Table 5). Even though it is not the objective of this paper to evaluate if these 

correlations are statistically significant, the results indicate that there is a potential 

for using the NPV fraction images to estimate biophysical properties of degraded 

forests in open forest environments as well. 

2.6.3 Monitoring Forest Degradation: practical application and 

challenges 

One potential application of the fraction change detection technique is the 

discrimination between managed and unplanned logging. Currently, there is an 
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increasing need to monitor areas under forest management in the Amazon region. 

First, the Brazilian government has improved the control of selective logging in the 

region by requesting detailed information on the location of forest plots that will be 

subject to timber harvesting and requiring specific management practices following 

logging (Casa Civil, 2004). Second, the logging private sector has become more 

interested in forest certification, which requires high standard management practices 

(Lentini et al., 2003). Finally, the Brazilian government has been evaluating the 

possibility of providing long-term concessions in National Forest areas for logging 

companies interested in timber harvesting (Veríssimo et al., 2002). Therefore, low 

cost, timely and reliable information on forest disturbances is required to monitor the 

forest areas authorized by the government and/or certified for conducting forest 

management. 

The fraction change technique presented in this chapter has the potential to be 

used to indicate if an area is following the management practices required by the 

Brazilian government and/or by the certification institutes. For example, both the 

GV and NPV fractions showed significant differences from Intact Forest to Managed 

Logging, but showed higher significant differences and more pixels showed changes 

in fraction values from Intact Forest to Conventional Logging and Logged and 

Burned areas. In other words, the fraction change technique has the potential for 

differentiating managed logging areas from unplanned logging areas. Therefore, a 

forest monitoring program could use the fraction change technique to verify if the 

areas that have received government authorization and/or forest certification to 
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manage forest areas for timber harvesting are following the management 

prescriptions. 

There are, however, two main challenges to implementing a remote sensing 

program for monitoring forest management plans in the Amazon region. The first 

has to do with technical remote sensing issues. Reflectance retrieval, radiometric 

inter-calibration and SMA, particularly dealing with the need to find the correct set 

of endmembers, are not trivial tasks. Second, processing and interpreting the fraction 

data requires training the end-users who will be in charge of such a forest monitoring 

system.  

2.7 Conclusion 

Statistical multi-temporal analysis of reflectance, vegetation and infrared indices 

and fraction images, derived from SMA, showed that fraction images are more 

sensitive to changes in transitional forest environments due to selective logging and 

burning than the broad-band indices tested here. Low intensity logging, such as 

Managed Logging and Non-mechanized Logging are more difficult to distinguish 

from Intact Forest but a regeneration signal - caused by understory vegetation growth 

and canopy closure -becomes significant in the second and third year due an increase 

in GV and decrease in Shade. The time-series results showed that changes in GV and 

NPV fractions were higher when Intact Forest was changed to Conventional Logging 

and to Logged and Burned environments in the first year following the degradation 

event. In the Logged and Burned Forests, the NPV signal was more persistent, 
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showing a burned signature through the second year after forest burning. Therefore, 

both GV and NPV can be used in change-detection classifiers for identifying and 

mapping Conventional Logging and Logged and Burned forests in the Brazilian 

Amazon, with images no more than one year apart. 
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Table 5. Biophysical properties of the Intact Forest class and of the degraded forest classes estimated from the 
forest inventories. 

Biophysical 
property 

Intact Forest 
(n=4) 

Non-
mechanized 

Logging  
(n=5) 

Managed 
Logging (n=5) 

Conventional 
Logging (n=2) 

Logged and 
Burned 
(n=3) 

Ground cover (%)           
Intact vegetation 95 (5) 83 (9) 50 (11) 59 (3) 50 (19) 

Woody debris 4 (5) 10 (11) 29 (7) 17 (8) 39 (28) 
Disturbed soil 0 7 (2) 17 (6) 24 (12) 5 (7) 

            
Canopy cover (%) 93 (5) 87 (4) 97 (1) 92 (0) 67 (5) 
            
Aboveground live 
biomass (t ha-1) 306 (44) 250 (20) 219 (31) 277 (44) 166 (45) 
      

aMeans presented with S.D. noted parenthetically.  
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CHAPTER III: Combining Spectral and Spatial Information to 

Map Canopy Damages from Selective Logging and Forest 

Fires2 

3.1 Introduction 

Remote sensing techniques for mapping forest degradation caused by selective 

logging and the forest fires are critically needed in the Brazilian Amazon. In these 

regions, ongoing deforestation has fragmented remaining forests and exposed the 

remnants to increasing levels of timber extraction and an alarming frequency of 

uncharacteristic forest fires (Cochrane, 2003). Several techniques for mapping 

selectively logged or burned areas have been proposed, but none has proven 

satisfactory as a general tool for detecting the type and severity of forest degradation. 

Visual interpretation of Landsat Thematic Mapper (TM) images was the first 

technique proposed to map selective logging (Watrin and Rocha,1992); it provided 

some of the first remote sensing based estimates of the area affected by selective 

logging in the Brazilian Amazon (Santos et al., 2002; Matricardi et al., 2001). Visual 

interpretation is possible when logging ‘scars’ are visible on the images. However, 

these logging “scars” only persist for one to two years after logging (Souza Jr. et al., 

in press a). Furthermore, visual interpretation is challenging when the logging 

intensity is low as is the case, for example, with mahogany harvesting (Veríssimo et 

                                                 

2 Accepted for publication: Souza Jr. et al., (in press b). 
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al., 1995) or non-mechanized logging. Finally, visual interpretation is time 

consuming and can have a human bias. 

Conventional digital image processing techniques such as minimum distance and 

maximum likelihood classifiers have also been evaluated for mapping selective 

logging in the Amazon (Stone and Lefebvre, 1998) as have texture and reflectance 

analyses (Asner, et al. 2002). These techniques are prone to error due to the spectral 

ambiguity between selectively logged areas of various ages and extraction intensities 

and intact forest.  

SMA overcomes some of the problems of visual interpretation and conventional 

image processing techniques. The soil fraction derived from SMA enhances the 

detection of the log landings and logging roads, which have been recognized as the 

spatial signature of mechanized logging in tropical forests (Souza Jr. and Barreto, 

2000; De Wasseige and Defourny, 2004). The total forest area affected by selective 

logging, which integrates the clear-cut forest to build roads and log landings, forest 

island that were not harvested and canopy damaged forest (Souza Jr. and Roberts, 

2005), can be estimated from log landings using an estimated tree harvesting radius 

(Souza Jr. and Barreto, 2000; Monteiro et al., 2003). If forest damage data are 

available, this area mapping technique can be used to estimate the impact of selective 

logging on the forest. However, this approach does not provide spatial information 

about the location of the forest canopy damages. To overcome this limitation, Asner 

et al. (2002) proposed using gap fraction data derived from Green Vegetation (GV) 

fraction images obtained with SMA as a means to estimate forest canopy damage 
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associated with selective logging. The gap fraction approach cannot separate selective 

logging gaps from canopy gaps generated by natural forest disturbances (e.g. 

treefalls, windthrows, lightning strikes), and is likely to overestimate the area affected 

by selective logging in the Amazon region. Finally, the non-photosynthetic vegetation 

(NPV) (Roberts et al., 1993) fraction has been used to quantify levels of forest 

degradation caused by burning (Cochrane and Souza Jr., 1998). 

The Soil, GV and NPV fractions have been used independently, underutilizing 

the information provided by SMA models. Decision tree classification was proposed 

to integrate the fractions of GV, Soil and NPV to classify degraded forest 

environments due to selective logging and burning (Souza Jr. et al., 2003). However, 

this approach is only useful for mapping highly degraded forests which have been 

subject to recurrent logging and burning. 

In this study, I present a robust technique to map canopy damage caused by 

selective logging and burning that overcomes the problems described above. First, a 

novel spectral index is proposed to enhance the identification and detection of forest 

degradation that combines GV, NPV, Shade and Soil fractions derived with SMA. 

Second, a contextual classification algorithm (CCA) integrates the spatial 

information of log landings and roads with the proposed fraction index images to 

unambiguously separate canopy damage due to selective logging and associated 

burning from canopy damages due to natural disturbance. Fires are not considered 

natural disturbances in this study due to the extreme rarity of such fires in these 

forests (Cochrane, 2003). Forest fires are becoming increasingly common in 
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fragmented and logged forests, however, the spatial distribution of these fires 

(Cochrane, 2001) and association with human land use (Cochrane et al., 1999; 

Cochrane et al., 2004) clearly indicate their anthropogenic origins.  

3.2 Study Area 

The proposed techniques were tested in the vicinity of Sinop County, located in 

the state of Mato Grosso, Brazil (Figure 1). Transitional forest, between ‘cerrado’ 

and dense forest, is the predominant vegetation type in the study region. These 

transitional forests are characterized by 93% canopy cover, a tree density of 422 

trees ha-1, and a total aboveground live biomass of 326 tons ha-1 (Monteiro et al., 

2004). The diversity and density of timber species in these transitional forests are 

smaller than in dense forests. The topography varies from flat to undulating terrain, 

on Latosol soils. The average annual precipitation is 2,000 mm (RADAMBRASIL, 

1981). 

Selective logging in this area is characterized by the selective harvesting of only 

high quality timber species. The harvesting intensity ranges from 10 to 40 m3/ha and 

conventional logging operations are predominantly unplanned in terms of forest 

management (Monteiro et al., 2004). Four types of selectively logged forest were 

identified in the field: Non-mechanized Logging, Managed Logging, Conventional 

Logging and Logged and Burned (Table 1). Selectively logged forests are a complex 

mosaic of three environment types: i) undisturbed forest islands that were not 

affected by logging operations, often due to difficult access resulting from 
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topography and rivers, or because of a lack of commercial timber species; ii) cleared 

forest for logging roads and trails used for machine movements (skidders and trucks) 

and log landings used to temporarily store the harvested timber; and iii) forests with 

canopies damaged by tree-felling and extraction during logging operations. Forest 

fires are frequent in the study region and are strongly associated with prior selective 

logging (Cochrane et al. 2004). The synergism between selective logging and forest 

fires increases the extent and severity of forest burning and results in extensive forest 

degradation (Cochrane et al., 1999; Monteiro et al., 2004). Detection and mapping of 

selectively logged and burned forests in the resulting forest mosaic is difficult and 

further complicated by the rapid canopy closure and undergrowth that occur after 

logging or burning. 

3.3 Data Set 

3.3.1 Forest transect inventory 

Nineteen 0.5 ha forest transect inventories, conducted in September 2001 (n=14) 

and August 2004 (n=5), were used to characterize the different classes of degraded 

forests found in the study areas (Figures 1 and 6). Additionally, information about 

logging and fire histories, ground cover, canopy cover and biomass were used to test 

the sensitivity of the proposed fraction-based index for distinguishing the forest 

degradation classes, Non-mechanized Logging, Managed Logging, Conventional 

Logging and Logged and Burned (Table 1).  
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Figure 6. Map of the study area showing the location of the forest transects and of the aerial videography transects. 
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Table 3 lists the year that forest degradation took place and the disturbance 

history of the forest transects conducted in the study area. The forest inventories 

were conducted following the field protocol proposed by Gerwing (2002) to 

characterize degraded forest in the eastern Amazon. This method has successfully 

been applied to characterize biophysical properties and dynamics of degraded forests 

in transitional forests (Monteiro et al., 2004) like those in the study region. The 

forest inventory procedure required measuring all trees with Diameter at the Breast 

Height (DBH) greater than 10 cm along a 10 m by 500 m transect. Ten sub-parcels 

(10 m x 10 m) were established every 50 meters along each transect where all trees 

were mapped and ground cover and canopy cover fractions were estimated. Above 

ground biomass estimates were made using allometric equations available in the 

literature (Gerwing, 2002). The biophysical information extracted from the transect 

inventories are summarized in Table 5. 

3.3.2 Satellite Imagery Data 

Landsat TM 5 and Landsat Enhanced Thematic Mapper (ETM+) images, bands 

1-5 and 7, acquired between 1984 and 2004 were used in this study (Table 2). The 

images were acquired through the Tropical Rain Forest Institute Center (TRFIC) and 

the Brazilian Space Agency (INPE). 
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3.4 Methodology 

3.4.1 Image Processing 

a) Image Registration and Radiometric Calibration 

The Landsat ETM+ image acquired in 1999 in Sinop (226/68) was georeferenced 

using several control points extracted from NASA GeoCover 2000 Mosaic 

(https://zulu.ssc.nasa.gov/mrsid/). Next, the georectified Landsat image was used as 

the reference image to register the images acquired for the other dates (Table 2). The 

registration utilized a polynomial algorithm and nearest neighborhood interpolation, 

available in the Environment for Visualizing Images – ENVI - 4.0 software (ENVI; 

Research Systems, Boulder, CO). A minimum of 14 image control points were used 

and the maximum root-mean-square error allowed was 1 pixel. 

b) Atmospheric correction and Inter-calibration 

The reference image was converted from encoded digital number (DN) to 

reflectance. To perform this task, the reference image was converted to radiance 

using the gains and offset provided in the image metafile. Next, atmospheric 

correction was performed using Atmospheric Correction Now 4.0 

(ACORN:Analytical Imaging & Geophysics, Boulder, CO). Visibility and water 

vapor parameters of the atmospheric correction model were determined by a trial-

and-error sensitivity analysis of a dark object reflectance (a lake). The final  
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parameters were estimated when the expected reflectance values of the dark object 

were found. The fixed water vapor for Sinop was 40 millimeters, and the image 

atmosphere visibility was 25 km. 

The other images (Table 2) were inter-calibrated to the reflectance image using a 

relative radiometric calibration approach (Roberts et al., 1998; Furby & Campbell, 

2001), regressing encoded radiance against reflectance in the reference image. This 

technique assumes uniform atmosphere over the image scene, and that invariant 

ground targets can be found in the reference and the uncalibrated images. To account 

for spatially variable atmospheric contamination due to haze and smoke, the Carlotto 

(1999) technique was applied to those images that had significant contamination 

prior to relative radiometric calibration. The Carlotto technique is based on the 

assumption that smoke and haze only adversely impact the visible bands, leaving the 

NIR and short-wave Infrared bands unchanged. Statistics are calculated for the entire 

image, in which average values for TM bands 1, 2 and 3 are calculated for each 

unique combination of TM bands 4, 5 and 7. After calculating these statistics, the 

original values for TM bands 1, 2 and 3 for a specific combination of bands 4 to 7 

are then replaced with the scene averages for that combination. This approach, 

developed by Carlotto (1999) has the effect of homogenizing contamination 

throughout a scene – thus clear sky portions of the image gain a slight amount of 

contamination, while contamination is significantly reduced in areas under smoke or 

haze. 
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Typical invariant targets used included intact forest, second growth, green 

pasture, bare soil and water. Second growth and green pasture were only used as 

invariant targets for images that were no more than two years apart from the 

reference image date. The slopes and intercepts for the relative radiometric inter-

calibration were obtained from a linear regression that was estimated using the pixel 

mean values, extracted from a 3 by 3 pixel area, of the invariant targets for each 

band. These coefficients normalize the uncalibrated images to the reference images, 

converting Digital Numbers of the uncalibrated images to reflectance. 

3.4.2 Spectral Mixture Analysis - SMA 

The Landsat TM/ETM+ reflectance data of each pixel were decomposed into 

fractions of GV (green vegetation), non-photosynthetic vegetation (NPV), Soil and 

Shade through Spectral Mixture Analysis – SMA. (Adams et al., 1993). The SMA 

model assumes that the image spectra are formed by a linear combination of n pure 

spectra, such that: 

R
b
 = ∑

=

n

i 1

Fi Ri,b
 + εb     (8) 

for 

i

n

=
∑

1
 F

i
 = 1      (9) 

where R
b is the reflectance in band b, R

i,b is the reflectance for endmember i, in band 

b, Fi the fraction of endmember i, and εb is the residual error for each band. The 
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SMA model error is estimated for each image pixel by computing the RMS error, 

given by: 

RMS =  [n-1∑
=

n

b 1

εb]
1/2     (10) 

The identification of the nature and number of pure spectra (i.e., endmembers), 

in the image scene is imperative for a successful application of SMA models. Four 

mixed endmembers are expected in degraded forest environments, GV, NPV, Soil 

and Shade. Image endmembers representing GV, NPV and Soil were extracted from 

the reference reflectance image. Shade was assigned zero percent reflectance at all 

wavelengths. The pixel-purity-index (PPI), available in ENVI 4.0 (Boardman et al., 

1995) was used to identify image endmember candidates. Five image subsets 

(500x500 pixels), representing the variety of land cover types found in the images, 

were used as inputs for the PPI algorithm. The PPI result was used to identify the 

pixel location in the original image and extract the spectral curves of these pixels. 

The final image endmembers were selected based on the pixel location in the 

Landsat reflectance spectra with the aid of an n-dimensional visualization tool 

available in ENVI. The pixels located at the extremes of the data cloud of the 

Landsat spectral space were selected as candidate endmembers. The final 

endmembers were selected based on the spectral shape and image context (e.g., soil 

spectra are mostly associated with unpaved roads and NPV with pasture having 

senesced vegetation). 
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SMA models were computed for each date using the inter-calibrated image 

endmembers, except the reference image, which was the one used to extract the 

endmembers. The SMA model results were evaluated as proposed by Adams et al. 

(1993). First, the RMS images were inspected and models with RMS values greater 

than 5% were discarded from the fraction change analysis. Next, fraction images 

were evaluated and interpreted in terms of field context and spatial distribution. 

Finally, the histograms of the fraction images were inspected to quantify the 

percentage of pixels lying outside the range of zero to 100% and to evaluate fraction 

value consistency over time (i.e., that intact forest values were similar over time). 

Only models with at least 98% of the values within zero to 100% and those that 

showed mean fraction value consistency over time were kept. For the models that 

did not pass one of these tests, new invariant targets were collected to improve the 

image inter-calibration coefficients and new SMA models were run until the 

criterion was met. 

3.4.3 Normalized Difference Fraction Index – NDFI 

Selectively logged forests and burned forests have a lower proportion of GV and 

a higher proportion of NPV and Soil relative to intact forest (Souza Jr et al., in press; 

Souza Jr. et al., 2003; Cochrane and Souza Jr., 1998). The shade content of these 

degraded forests is also higher relative to intact forest (Souza Jr. et al., in press). In 

order to enhance the degradation signal caused by selective logging and burning, a 

Normalized Difference Fraction Index (NDFI) is proposed, computed using the 

fraction images obtained with SMA models by: 
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SoilNPVGV
Soil)(NPVGVNDFI

Shade

Shade

++
+−

=    (11) 

where GVshade is the shade-normalized GV fraction given by, 

Shade100
GVGVShade −

=     (12) 

The NDFI values range from -1 to 1. Theoretically, the NDFI value in intact 

forest is expected to be high (i.e., about 1) due to the combination of high GVshade 

(i.e., high GV and canopy Shade) and low NPV and Soil values. As the forest 

becomes degraded, the NPV and Soil fractions are expected to increase, lowering the 

NDFI values relative to intact forest. Therefore, the NDFI has the potential to 

enhance the detection of forest degradation caused by selective logging and burning. 

The NDFI has the advantage of combining, in one synthetic band, all the information 

that has been shown to be relevant for identifying and mapping degraded forests in 

the Amazon region. 

3.4.4 Statistical Analysis 

Based on the information on logging and fire histories, it was possible to identify 

the date of the forest degradation events (Table 3). The Landsat image corresponding 

to the forest degradation events for each transect were selected for analysis. For 

example, for transect 8, which was logged in 1993, the 1993 image would have been 

selected. Next, the geographic coordinate of the transects were used to locate the 

degraded forests areas in the images. Fractions of GV, NPV, Shade and Soil were 

extracted using 30 pixels selected randomly within the degraded area where transects 
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were conducted. The NDFI value of the randomly selected pixels was also computed 

for each transect using the fraction values extracted according to Equations 11 and 

12. 

The final step was to perform a pair-wise class separability analyses based on the 

fractions and NDFI variables. The Tukey test (Ott, 1992), available in the R 

Language (http://www.r-project.org/) was used to evaluate if the Intact Forest and 

the forest degradation classes could be separated from each other at a 99% 

confidence interval (P < 0.01). The Tukey test performs a multicomparison by 

testing the mean of a population against the mean of each other population. Because 

the Tukey test requires normally distributed samples, a data transformation was 

applied when necessary by computing the arcsine of the square-root of the data 

variable (Hogg and Graig, 1994) prior to statistical analysis. 

3.4.5 Contextual Classification Algorithm 

The log landing locations extracted from the Soil fraction image were used as 

contextual information to map forest canopy damage associated with selective 

logging and forest burning. Because log landings are the spatial signature of selective 

logging (Souza Jr. and Barreto, 2000; De Wasseige and Defourny, 2004) and burned 

forests are associated with selective logging (Cochrane et al., 2004), this approach 

allows us to separate selective logging and forest fires from forest natural disturbance 

(e.g., blow downs and drought-deciduous trees) in tropical forests. Natural 

disturbances in the Brazilian Amazon affect mostly the forest canopy and soil is not 

exposed because the ground is covered by damaged vegetation (Nelson et al., 1994). 
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In order to separate canopy damages caused by selective logging and associated 

forest burning from other types of canopy disturbance, a contextual classification 

algorithm (CCA) was developed. The CCA integrates log landing and logging roads 

extracted from soil fraction images with the NDFI image. Log landings exhibit 

higher Soil fraction values than intact forest and their detection and extraction can be 

automated (Souza and Barreto, 2000; Monteiro et al., 2003). Logging roads show 

high soil values and have a linear shape. An image thresholding technique was 

applied to extract log landings and logging roads from the Soil fraction images. All 

pixels with a Soil fraction greater than 10% were extracted and used as inputs for a 

region labeling program available in IDL (Interactive Data Language, Research 

System, Boulder, CO). Next, all regions found in the region-labeled image were 

indexed and the area and shape of each indexed-region were calculated. Regions 

with area varying from one to four pixels in size were classified as log landings 

based on field measurements of log landings. The log landing average area for this 

region measured at the field scale is 1,043 m² (n=34) with a minimum and maximum 

of 348 m² 4,051 m², respectively (Monteiro et al., 2003; Monteiro, 2005). These 

areas translate to a minimum of 40% of a pixel (18x18 m), an average of slightly 

more than a pixel and a maximum of 4.5 pixels. Assuming a worst case scenario of a 

small log landing falling between four pixels, this translates to a minimum Soil 

threshold of 10% and areas ranging from 1 to 4 pixels. Therefore, the area and 

fraction threshold used to extract the log landings from the Landsat images is within 

the range of log landings measured in the field. Finally, a forest mask was applied to 
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avoid confusing log landings with other small cleared areas found in deforested 

areas (Souza Jr. and Barreto, 2000; Monteiro et al., 2003). 

A 2D-search program, also available in IDL, was used to look for a specific 

range of values in the NDFI images associated with canopy damages due to selective 

logging and burning. First, the log landing extracted from the Soil fractions were 

used as the starting locations to search within the NDFI image for values ranging 

from 0 to 0.75 which represents the NDFI values associated with canopy damage. 

This range of NDFI values was defined empirically using the canopy damage data 

collected during the forest inventories (Figures 1 and 6, Table 3) and is associated 

NDFI values. Given the pixel location of a log landing region, the IDL 2D-search 

program extracts the NDFI value of each neighboring forested pixel adjacent to the 

selected log landing. If the NDFI value of the selected neighboring pixel is within 

the specified NDFI threshold range (i.e., between 0 and 0.75), the pixel is classified 

as Canopy Damage. Otherwise, the pixel is classified as Intact Forest. Next, each 

pixel classified as Canopy Damage provides new locations to search for new 

neighboring pixels and to test if their NDFI values are within the canopy damage 

range. The new neighboring pixels are classified as Canopy Damage or Intact Forest 

based on the criteria described above. This process grows canopy damage regions 

from the log landings until all neighboring pixels are classified as Intact Forest. 

Then, the algorithm jumps to the next log landing location that had not been 

included within a Canopy Damage region. The Canopy Damage classification is 

completed when all log landing locations are evaluated as described above. The 
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NDFI image was smoothed, prior to the application of the 2d-search program, using 

a 3 x 3 pixel kernel, to remove image classification speckle. 

3.4.6 Accuracy Assessment 

The canopy damage map generated with the contextual classifier was assessed 

with aerial videography images acquired in December 14 and 17 of 2000. The 

videography system consisted of a SONY DCR-VX1000 digital camera, a Magelan 

NAV5000 GPS and of a HORITA GPS3 time code generator. Image mosaics of 1 

meter spatial resolution were generated to build five videography transects, covering 

a region of 168 km by 0.64 km (Figures 6). An example of an aerial videography 

mosaic is given in Figure 7. 

 

 

 

 

 

 

 

Figure 7. Example of aerial videography moisaic used as reference data for 
the map accuracy assessment 
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The videography mosaics were georeferenced using the GPS data collected 

during the image acquisition. The pixel location accuracy of the videography mosaic 

was 15 m after geoferencing, which guaranteed accurate registration with the 

Landsat images. 

The accuracy assessment protocol included defining a sampling design, a 

response design, and evaluating the canopy damage map using the reference data 

(Powell et al., 2004). The sample design used a block sample of 5 by 5 Landsat 

pixels. A total of 80 block samples (i.e., 2000 pixels) were randomly selected from 

the Landsat, located on the videography and interpreted by an independent image 

interpreter. The response design used the forest and soil cover proportions and the 

shadow proportion within the block sample as the criteria for labeling each block 

sample as Intact Forest, Canopy Damage or Deforestation. The block sample was 

classified based on cover fractions observed in the videography as follows: 

• Intact Forest: ≥ 70% of forest canopy and ≤ 30% of shade, 0% of soil; 

• Canopy damage: 30-70% of forest canopy, 10-40 % soil plus NPV, and ≥ 

50% of shade; 

• Deforestation: <30% of forest and >40% of soil plus NPV, and ≤ 50% of 

shade 

These classification threshold values were defined based on visual interpretation 

of the videography images. It is important to highlight that the shade content 

observed in the videography images does not correspond to the amount of shade 

estimated with SMA for the Landsat images pixels. The shade fraction in a Landsat 
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scene is a product of two components, reduced reflected radiance due to local 

illumination (ie, leaf angles, shaded crowns) and shadows. In contrast, the shade 

fraction derived from videography is strictly a measure of shadows. As a result, the 

two measures of “shade” will differ, with videography derived estimates typically 

lower. In addition, the videography was flown closer to solar noon in December, 

when the solar zenith is lowest in the southern hemisphere. In contrast, the Landsat 

data were acquired earlier in the day in June, at a higher solar zenith and thus would 

be expected to have a higher amount of shadowing. To account for the fact that the 

videography and Landsat data were acquired six months apart (December 14-17, 

compared to June 26, 2000 for Landsat), pixels that were subject to land cover 

changes in the videography reference data were removed from the accuracy 

assessment (5 blocks or 125 Landsat pixels) prior to calculation of the classification 

error matrix (Powell et al., 2004). Geocorrection errors of the block sample pixels 

were also corrected when necessary using land features such as roads, rivers and 

forest edges. 

3.5 Results 

3.5.1 Class Separability 

Table 6 shows fractions and NDFI statistics for the Intact Forest, Non-

mechanized Logging, Managed Logging, Conventional Logging and Logged and 

Burned, for the areas where the forest transects were conducted. The results of the 

pair-wise comparison of these classes using the Tukey test (P<0.01) is represented 
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by superscript letters shown in the means of GV, NPV, Soil, Shade and NDFI (Table 

6). Means with the same superscript letters showed no significant statistical 

differences, whereas different superscript letters indicates the opposite. For example, 

no significant changes in the GV means of Intact Forest (40%, symbol a), Non-

Mechanized Logging (41%; symbol a) and Managed Logging (41%; symbol a) were 

observed among each pair of these classes (Table 6). But, when the pair-wise 

comparison was performed using the Tukey test between Intact Forest (40%, symbol 

a), Conventional Logging (38%, symbol b) and Logged and Burned (25%, symbol c) 

classes, significant changes in the means of the GV fraction were observed for all 

possible pairs among these classes (Table 6). This also implies that Conventional 

Logging (b) and Logged and Burned (c) can be separated from Non-mechanized 

Logging (a) and Managed Logging (a); and that Conventional Logging (b) can also 

be distinguished from Logged and Burned (c) (Table 6). 

NPV and Soil, on the other hand, showed a pattern of increasing mean values 

from Intact Forest to the most degraded forest class (Table 6). The statistical analysis 

showed that NPV means of Intact Forest (a), Non-mechanized Logging (a) and 

Managed Logging (a) are not significantly different from among each other. The 

NPV means of Conventional Logging (b) and Logged and Burned (b) are also not 

significantly different from each other. However, Conventional Logging (c) and 

Logged and Burned (d) showed mean values significantly different from the mean 

values of Intact Forest (a), Non-mechanized Logging (a) and Managed Logging (a) 

(Table 6). The Soil fraction showed a similar result as the NPV fraction, except the 
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Managed Logging (b) and Conventional Logging (b) did not have significantly 

different means (Table 6). 

The mean Shade fraction was slightly higher in Logged and Burned forest (56%) 

relative to the Intact Forest class (51%). No statistically significant change was 

observed among each pair of the Intact Forest (a), Non-mechanized Logging (a) and 

Managed Logging (a) classes (Table 6) using Shade fractions. Significant statistical 

changes in mean values were observed between Conventional Logging (c) and 

Logged and Burned (d), and between these two classes and the other classes (i..e, 

Intact Forest (a), Non-mechanized Logging (a), Managed Logging (a). Managed 

Logging (b) and Conventional Logging (b) did not show significant change in their 

means (Table 6).  

These statistical results show that GV, NPV and Soil fractions are each sensitive 

to forest degradation to a certain degree. However, the NDFI which synthesizes all 

of these data showed more pronounced changes in mean values as a function of 

forest degradation intensity than the changes in the mean values of any of the 

individual fraction images. The pair-wise statistical analysis showed that NDFI 

cannot separate Intact Forest (a) from Non-mechanized Logging (a). But, all other 

classes [i.e., Managed Logging (b), Conventional Logging (c) and Logged and 

Burned (d)] showed significant statistical changes in means among each other and 

against Intact Forest (a) and Non-mechanized Logging (a) (Table 6). 
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Table 6. Means and standard deviations for Intact Forest and the forest degradation classes. Different superscript 
letters represent significant statistical difference among classes using the Tukey test at P<0.01. For example, Intact 
Forest and Non-mechanized Logging showed the same letter (a) meaning that their means are not significantly 
different using NDFI, whereas Managed Logging (b), Conventional Logging (c) and Logged and Burned showed 
different letters meaning that there are significant statistical differences among them. 

 

Intact Nonmechanized 
Logging Managed Logging Conventional 

Logging 
Logged and 

Burned 
Class 

Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation 

GV 40a 4 41a 5 41a 5 38b 9 25c 7 

NPV 6a 2 5a 2 6a 2 10bc 4 11bd 3 

Soil 2a 1 1a 1 3ab 1 4bc 3 7d 3 

Shade 51a 3 53a 5 51ab 4 49bc 3 56d 3 

NDFI 0.84a 0.08 0.87a 0.07 0.79b 0.07 0.58c 0.24 0.49d 0.22 
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The changes in mean values from Intact Forest to degraded forest classes can be 

better visualized in the delta change graph shown in Figure 8. This delta change 

graph is calculated by subtracting the mean value of Intact Forest from the mean 

value of each degraded forest class. 

The GV fraction decreased non-linearly with degradation intensity. The most 

drastic changes in GV mean were observed between Intact Forest and Logged and 

Burned Forests (15%; Figure 8). The Shade fraction changed less than 5% from 

Intact Forest to the most degraded forest class – Logged and Burned. The mean NPV 

fraction increased by about 5% between the Intact Forest and both the Conventional 

Logging and Logged and Burned classes. The Soil fraction showed smaller increases 

in mean values than the change in mean exhibited by the NPV fraction (Figure 9). 

-20

-15

-10

-5

0

5

10

Non-
mechanized

Logging

Managed
Logging

Logged Logged and
Burned

C
ha

ng
e 

fro
m

 In
ta

ct
 F

or
es

t (
%

)

GV

NPV

Soil

Shade

NDFI

 

Figure 8. Delta changes of fractions and NDFI, calculated by subtracting the 
mean value of Intact Forest from the mean value of each degraded forest class. 
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The percent change of NDFI was also computed to facilitate the comparison of 

its performance to detect forest degradation changes relative the percent changes 

obtained with the fraction images. The NDFI images showed a higher percent 

change between Intact Forest and the forest degradation classes, when compared to 

the changes detected by any of the individual fraction image (Figure 8). This higher 

magnitude change is due to the fact that the NDFI includes all changes detected by 

each individual fraction in one single band. Therefore, the identification of canopy 

damages due to selective logging and forest burning is enhanced by the NDFI 

making this information useful for image classification purposes. The most 

pronounced enhancement can be seen in the potential for discriminating the 

Conventional Logging class, which typifies most logging activities in the region. 

None of the individual fractions showed a mean change of greater than 5% but the 

corresponding NDFI mean values were close to 15% different (Figure 8). 

3.5.2 Forest Canopy Damage Detection 

Figure 9 shows the region where transects 3, 4 and 5 were conducted, which was 

selectively logged in 1998 and 1999, severely burned in 2000, then allowed to 

regenerate over the next three years. Dark green colors in Figure 9 represent forest 

areas that were not subject to canopy damage due to selective logging and/or burning 

and as result have high NDFI values (>0.75). Orange to yellow colors are associated 

with forest canopy damage (0 < NDFI < 0.75) due to selective logging and forest 

burnings. Areas with negative NDFI values show up in the NDFI images in magenta 
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and white colors and are mostly associated with areas that were subject to clear-

cutting (Figure 9). 

The first selective logging event in this area happened in 1998 (Figure 9a). It is 

possible to observe log landings and infer the location and shape of the primary 

logging roads connecting the log landings. Forest canopy damage is identified as 

light green pixels with NDFI < 0.75 as indicated by the arrow in Figure 9a. Because 

the timber harvesting had not been completed until the image acquisition date, it is 

still possible to observe Intact Forest (NDFI > 0.75) areas among the log landings 

and logging roads in the southern part of the selectively logged area in 1998.  

The NDFI values of the selectively logged forest in 1998 increased in the 1999 

image – old logged in Figure 9b – but a canopy damage signal (i.e., NDFI < 0.75) of 

selective logging appeared right beside the area logged in 1998. In 2000, this logged 

forest area was subject to a severe fire event, burning approximately  5,000 hectares 

(Figure 9c). The NDFI values of this Logged and Burned forest are smaller than the 

NDFI values found in the conventionally logged forests in the previous years due to 

more drastic canopy damage and a higher concentration of exposed NPV and Soil 

(Figure 9a-b). Areas that completely lost forest canopy due to fire show up as 

negative NDFI values (Figure 9c). In the year following burning, the forest canopy 

damages can still be detected with the NDFI image (Figure 9d). In the second year 

after burning, the canopy damages are no longer visible with only log landings 

showing up (Figure 9e). Finally, in the third year the NDFI values returned to those 

found in intact forest (Figure 9f). 
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Figure 9. Examples of forest degradation processes and temporal 

changes as detected the NDFI band. 

1998 
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NDFI and individual Fraction statistics were calculated for intact forest, canopy 

gaps, log landings and burned areas found in the Logged and Burned forest showed 

in Figure 10. Mean NPV, Soil and Shade fractions increased in log landings, canopy 

gaps and burned forest areas relative to intact forest areas (Figure 10). On the 

other hand, GV was the only fraction that exhibited a decrease in canopy gaps, log 

landings and burned areas relative to intact forest areas. The NDFI means for these 

environments changed more drastically than the changes detected by any of the 

individual fractions. The NDFI mean in intact forest was 0.84, dropping to 0.73, 0.26 

and 0.17 in canopy gaps, respectively (Figure 10). Therefore, NDFI has a greater 

potential for sub-classifying these types of degraded forest than individual fraction 

images values.  

Figure 10. Fractions and NDFI means and standard deviation (vertical 
error bar) of the main environments found in degraded forests areas. 
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3.5.3 Canopy Damage Classification 

The CCA detected canopy damages associated with selective logging and forest 

burning using the location of log landings as contextual information and the NDFI as 

the spectral information sensitive to canopy damages. The classification results were 

very accurate for the transect areas (Figure 1). The canopy damages were detected in 

all transects of Managed Logging, Conventional Logging and Logged and Burned 

classes. In the Non-mechanized Logging, however, the CCA algorithm did not detect 

canopy damage because the forest pixel showed NDFI values above the detection 

threshold and no log landing existed in these areas. Cleared areas for building log 

landings and logging roads were detected and mapped within the Managed Logging 

transect areas, but tree fall gaps were less frequently identified because of the 

reduced canopy damage characteristic of forest management practices used in these 

forests (Johns et al., 1996). In the Conventional Logging transect sites, the canopy 

damage area was much greater than that detected in the Managed Logging transect 

sites. This is to be expected due to the more intensive canopy damage associated 

with unplanned logging operations. All Logged and Burned transect areas, which 

show the most severe canopy damage impacts, were mapped accurately with the 

CCA classifier. 

It was not the objective of this study to perform a time-series classification, so 

only the full classification results for 2000, which corresponds to the year that the 

aerial videography data were acquired. In the study area (about 30,000 km 2), 65% 
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was classified as Intact Forest, 22% as non-forest (i.e., deforested areas and water 

bodies) and 13% was classified as canopy damaged areas. 

Examples of canopy damaged areas detected with the CCA classifier, outside the 

transect areas, are shown in Figure 11. Selectively logged areas that have an 

irregular spatial arrangement of log landings and logging roads are usually 

associated with more damage than unplanned harvesting operations. Managed 

logging operations are characterized by a more regular arrangement of log landings 

and roads. The CCA values for unplanned logging areas showed a much higher 

proportion of canopy damage, relative to intact forest, than the proportions from 

managed logging areas (Figure 11a,b). Forest areas that were subjected to the more 

drastic impacts of logging and burning have virtually all of the canopy area mapped 

as damaged (Figure 11c). 

The overall accuracy of the CCA classifier was 90.4% and the user’s accuracy of 

the canopy damage class was 94% (Table 7a). Most of the error, revealed in the error 

matrix, is associated with the classification of reference canopy damage data as 

forest (23%). This misclassification is expected due to the land cover mixing 

between intact forests, canopy damaged forests and areas subjected to clear-cut (i.e., 

log landings and logging roads) that typify selectively logged forests. The canopy 

damage map accuracy has also been assessed using the shade-normalized GV 

fraction as the search image to detect canopy damage (threshold ranging from 50 to 

75%). The overall accuracy dropped from 90.4% using NDFI to 86.8% using the 

shade-normalized GV to detect canopy damage (Table 7b). The user’s accuracy of  
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the canopy damage class obtained with the shade-normalized GV (92.0%) was 

virtually the same as the one obtained using the NDFI image (94.0%). But the user’s 

accuracy of the forest class was 6% lower using shade-normalized GV (Table 7b). 

 

Figure 11. Canopy damage classification examples obtained with the 
CCA classifier. 
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Table 7. Accuracy assessment results of the CCA classifier: a) using the 
NDFI as the search image for CCA; b) using GV as the search image for CCA. 
a) NDFI accuracy assessment 

Reference Pixels Classified 
Pixels 

Non-forest Forest 
Canopy 
Damage Total 

Users 
Accuracy 

(%) 
Non-forest 454 0 17 471 96.4 
Forest 6 625 117 748 83.6 
Canopy Damage 40 0 616 656 93.9 
Total 500 625 750 1875  
 
Producers Accuracy (%) 91.0 100.0 82.0  
 
Overall Accuracy = (1695/1875)  = 90.4%   
 
Kappa Coefficient = 0.85  
  

 
 
b) Shade-normalized GV accuracy assessment 

Reference Pixels Classified 
Pixels 

Non-forest Forest 
Canopy 
Damage Total 

Users 
Accuracy 

(%) 
Non-forest 454 0 17 471 96.4 
Forest 6 625 185 810 77.0 
Canopy Damage 40 0 548 594 92.0 
Total 500 625 750 1875  
 
Producers Accuracy (%) 91.0 100.0 73  
 
Overall Accuracy = (1627/1875)  = 86.8%   
 
Kappa Coefficient = 0.80 
  

* The accuracy error matrix obtained after removing 5 blocks of canopy damage reference data that 
were subjected to land cover changes within the period of Landsat image and videography images 
acquisitions, and after geo-correcting five block samples, also of this class, as proposed by Powell et 
al. (2004). 
 
 

The detection of log landings is crucial for a successful implementation of the 

CCA classifier. Recent log landings can be easily identified in selectively logged 

forest and were accurately mapped. In severely logged and burned forest, however, 
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not all log landings could be mapped. However, this did not represent a problem in 

these areas because very large contiguous canopy damaged areas are associated with 

these forests and only a few log landings are required as start locations for the 2D-

search program that seeks canopy damage areas. 

3.6. Discussion 

The NDFI and the CCA methods proposed in this study have the potential to 

contribute to the mapping of degraded forest associated with selective logging and 

burning in the Amazon region. The NDFI provides higher sensitivity to detected 

canopy damage than individual fraction values derived from SMA. The CCA 

classifier utilizes the location of log landings – the spatial signature of selective 

logging – to look for canopy damaged areas, enabling the distinction between natural 

and anthropogenic forest disturbances. Because most forest fires occur in logged 

forests (Cochrane, 2003), this methodology can also detect and map forest canopy 

damage due to forest fires. 

The detection and mapping of forest canopy damage due to logging and forest 

fires is intimately related to the detection of log landings and to the damage intensity. 

The detection and mapping of Non-mechanized Logging is not possible because this 

type of logging does not build log landings and generates low canopy damage. But, 

this type of selective logging in the Amazon region is associated with less than 5% of 

the timber production in the region (Lentini et al., 2003) with Conventional Logging 

and, to a lesser extent, Managed Logging the dominant forms. For these two types of  
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logging, detection and mapping of log landings are imperative to the success of the 

NDFI-CCA methodology. The log landing detection and mapping depends on 

empirical thresholds (Souza Jr. et al., 2003; Monteiro et al., 2003). The first threshold 

is applied to identify forested pixels with high soil fraction (i.e., Soil > 10%) 

associated with logging roads and log landings. Next, an area threshold is applied to 

map log landings (i.e., 1 to 4 contiguous pixels). These thresholds cannot be 

generalized to the whole Amazon region – it is likely that new thresholds have to be 

defined for other types of forests where selective logging is taking place such as 

dense and open forests. The same caution should be used when applying the NDFI 

threshold to other types of forests to detect canopy damages. 

The NDFI-CCA approach identifies and maps a variety of canopy damages 

associated with selective logging including the construction of roads and log 

landings, tree fall gaps, and all canopy damaged areas in burned forests. Tree fall 

gaps and burned forest are responsible for most of the biomass impacts and forest 

damages in selectively logged areas (Johns et al., 1996; Gerwing, 2002). Undamaged 

forests within the logged forests area not mapped with the NDFI-CCA methodology. 

The method proposed by Souza Jr. and Barreto (2000),which uses the location of log 

landings and a field-calibrated harvesting radius to estimate the total area potentially 

impacted by logging (i.e., damaged and undamaged forests) could be integrated with 

the NDFI-CCA method proposed in this study. By integrating these two approaches, 

the proportion of canopy damage, detected with NDFI and CCA, could be calculated 

relative to the total logged area.  Such information would be useful for local  
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monitoring of approved forest management plans and certified logging operations, 

which are expected to harvest trees with a minimal amount of canopy damage. For 

example, the Forest Stewardship Council (FSC) has defined a set of on-the-ground 

forestry operation standards to provide certification to loggers 

(http://www.fscoax.org/index.html). Currently, 1.8 million hectares of forests are 

certified in the Amazon region (FSC-Brazil; http://www.fsc.org.br/). 

The NDFI-CCA method can also be integrated with existing methods to sub-

classify canopy damaged areas into classes of degraded forests (e.g., managed 

logging, conventional logging, heavily logged and burned forests). For example, a 

decision tree classification was used to map several classes of degraded forests in the 

Eastern Amazon using GV, NPV and Shade fraction images derived from SPOT 4 

(Satellite Pour L'observation de la Terre ; Souza Jr., et al. 2003). I tested this 

approach in the transitional forests of Sinop, using fraction images derived from 

Landsat images, and found the results to be less accurate than those obtained for the 

dense forests of the Eastern Amazon due to confusion caused by the more open 

nature of these forests. However, the CCA method can be used to flag a region of 

forest as degraded for subsequent classification using decision trees, thereby 

increasing the overall accuracy of the method. There is the potential for additional 

improvement, by combining the NDFI image with the other fraction images, in the 

decision tree classification. This is an area of ongoing experimentation by our 

research group. 
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Access to cloud free images over the Amazon is critical for monitoring forest 

degradation. The optimal temporal resolution for detecting selective logging and 

burning is one year using the GV fraction and two years with the NPV fraction 

(Souza Jr., et al., in press a). The results indicate that the optimal temporal resolution 

of NDFI to detect canopy damage due to selective logging and burning is also one 

and two years, respectively. However, the NPV and the GV forest degradation 

signals are not as strong as the NDFI signal, making the detection and mapping of 

forest canopy damage more accurate with NDFI. 

The NDFI statistics extracted for the Intact Forest transects and for the degraded 

forest transects are compatible with the field-measured biophysical properties (Table 

5). The observed amounts of intact vegetation decreased with increasing forest 

degradation intensity and the corresponding amounts of detected wood debris and 

soils increased. The NDFI mean decreased as intact vegetation amounts decreased 

and the amount of wood debris and disturbed soil increased. Therefore, there is also 

potential to correlate canopy cover and biomass field measurements with the NDFI. 

More detailed studies, however, need to be conducted to demonstrate if these 

biophysical forest properties can be estimated with NDFI. 

Further image processing improvements that would prove helpful include 

developing fast and generic SMA models to generate physically meaningful fraction 

images over the Brazilian Amazon. Such generic SMA models have been suggested 

by Small (2004), due to the consistent topological structure of Landsat images 

spectral space. Currently, available SMA automation techniques use a combination 
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of very large endmember spectral libraries and Monte Carlo simulation (Bateson et 

al., 2000; Asner et al., 2004), which are computationally prohibitive for most 

Brazilian government agencies. The proposed NDFI-CCA methodology should be 

compared with the existing methods used to map selective logging and forest fire 

damage. 

3.7 Conclusions 

The NDFI and the CCA classifier can contribute to ongoing efforts to map and 

monitor logging operations in the Brazilian Amazon. NDFI enhances the detection 

of canopy damage over existing techniques and can be used in conjunction with the 

CCA algorithm to unambiguously map forest canopy damage caused by selective 

logging and burning. Additionally, the proposed techniques can be integrated with 

existing image processing methods to classify the damaged forest canopy areas into 

sub-classes of degradation. Image processing improvements, including the 

development of fast and generic SMA techniques for generating consistent NDFI 

images across the Amazon region, will be necessary to fully automate such forest 

degradation analyses. This is important for practical monitoring applications by 

government environmental agencies and private institutions tasked with certifying 

logging operations. 



 

 82

CHAPTER IV: Long Term Forest Degradation Mapping and 

Change Detection in the Southern Brazilian Amazon Forests 

4.1. Introduction 

Tropical forests of the Brazilian Amazon have changed greatly in the past 30 

years. Two key forest changes in the region are forest conversion to agriculture (i.e. 

deforestation) and forest degradation by such processes as selective logging and 

forest fires that only partially deforest an area. Forest conversion replaces the 

original forest cover by another land cover type (e.g., forest to pasture), whereas 

forest degradation changes the original forest structure and composition, but without 

completely removing the original forest cover. Forest can be degraded by natural 

phenomena (e.g. treefalls, windthrows, lightning strikes) or by anthropogenic 

activities. Selective logging and forest fires are the main anthropogenic disturbances 

responsible for forest degradation in the Amazon (Nepstad et al., 1999; Cochrane et 

al., 1999; Cochrane, 2003). Although natural forest fires may have historically 

occurred, these events have been so rare that forest tree species are almost all 

extremely sensitive to fire disturbance, exhibiting no evolutionary adaptations 

specific to fire (Uhl and Kauffman 1990). The current prevalence of forest fires in 

the Amazon has been clearly linked to human fire use (Cochrane 2001, Cochrane et 

al. 2004). 

Forest conversion has been quantified using satellite remote sensing in the 

Amazon region by a long-term deforestation monitoring program (INPE, 2003), 
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providing  relevant information for policy making such as the location and 

geographic extent of deforestation and estimates of deforestation rates (e.g., Casa 

Civil, 2004). Several local and regional studies have focused on the identification and 

mapping of deforestation (e.g., Fearnside and Salati, 1985; Fearnside 1989; Skole and 

Tucker, 1993; Alves and Skole 1996; Roberts et al., 2002). Pasture to second growth 

transitions, and second growth succession have also been the focus of several studies 

(e.g., Moran et al., 1994; Adams et al., 1995; Rignot et al., 1997 Nelson et al., 2000). 

More recently, pioneering remote sensing techniques for mapping forest 

degradation have been developed (Cochrane and Souza Jr., 1998; Souza Jr. and 

Barreto, 2000; Monteiro et al., 2003, Souza Jr. et al., 2003), however, they are still 

being perfected (Souza Jr. et al., in review). Existing change detection analyses of 

degraded forest in the Amazon have been of limited use due to the types of imagery 

available, evolving techniques, and a lack of frequent enough image dates to fully 

characterize selective logging (Stone and Lefebvre, 1998; Souza Jr. and Barreto, 

2000; Monteiro et al., 2003) and fire dynamics (Cochrane et al. 1999, Cochrane 

2001). Single date, infrequent or short-term satellite acquisitions are potential  

sources of errors in forest degradation temporal analyses due to rapid canopy closure 

and regeneration of degraded forest (Stone and Lefebvre, 1998; Lambin, 1999; Souza 

Jr. et al., in press a). 

Annual forest degradation maps would enable estimation of forest degradation 

rates, and an understanding of the relationships between forest degradation, 

deforestation (Cochrane et al., 1999; Cochrane, 2001) and selective logging  
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(Cochrane et al., 2004). This is key information for land cover change models that 

could be useful for predicting the future of the Amazon and the impacts of forest 

degradation on hydrological, biogeochemical and carbon cycles (Bazzaz, 1998; 

Giambelluca, 2002; Houghton et al.,2000). Environmental agencies could also 

benefit from the ability to monitor the expansion of degraded areas, facilitating 

enforcement of environmental protection laws. 

A pioneering study that utilized a robust multi-temporal analysis of degraded 

forests, encompassing 20 years of Landsat images has been conducted in the 

Southern Amazon (Souza Jr. et al., in press). The aim of the study was to statistically 

define the most useful information, extracted from Landsat images (e.g., reflectance 

bands, vegetation indices and fraction images), for detecting forest degradation 

changes caused by selective logging and forest fires, as well as the optimal temporal 

resolution for mapping these changes. Here, I present results from a twenty year long 

series of annual Landsat imagery that was used to map and quantify the rates of 

forest degradation caused by selective logging and forest fires. Additionally, I 

characterize and quantify the relationship between deforestation and forest 

degradation in the study area by answering the following questions: How much 

degraded forest is subsequently deforested? What are the observed fates of the 

degraded forests in the study area? 
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4.2. Study Area 

The change detection analysis was conducted in the area defined by the 

intersection of the all Landsat images used in this study (path 226, row 68), 

encompassing 28,750 km2. This Landsat path/row covers the Sinop region, an 

important sawmill center of the state of Mato Grosso during the 1990´s (Figure 1). 

Transitional forest between ‘cerrado’ and dense tropical forest is the main forest type 

found in this region. The topography is predominantly flat, on Latosol soils with an 

average annual precipitation of 2,000 mm. The dry season is characterized by several 

months of less than 100 mm of precipitation and typically extends from May to 

October (RADAMBRASIL, 1981). The main land uses in this region are agricultural 

(e.g. ranching and soybean cultivation) and selective logging. Selective logging 

extracts only a few of the most valuable trees from each hectare of forest but logging 

operations frequently cause extensive damage to the remaining trees and fracture the 

forest canopy (Uhl and Vieira, 1989). Forest burning is also common in this region, 

acting synergistically with selective logging to increase forest canopy damages 

(Monteiro et al., 2004; Cochrane et al., 2004). Conventional logging and forest fires 

are the main causes of forest degradation in the region, reducing on average the forest 

canopy cover by 33% and the live biomass by 45%. (Souza Jr., et al., in press). 

4.3 Data set 

Eighteen Landsat Thematic Mapper 5 (TM) images and three Landsat Enhanced 

Thematic Mapper (ETM+) images were used in this study (Table 1). The imagery 
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was acquired during the dry season of each year between 1984 and 2004. Limiting 

imagery dates to the dry season minimizes any potential misclassification of forest 

degradation due to seasonal changes. The number of days between image 

acquisitions varied from 299 to 433 days, with an average of 359 days (Table 1). For 

annual rate calculations of deforestation and forest degradation, the change 

increments quantified between satellite image dates were normalized to 365 days 

(i.e., the change detect between two consecutive dates divided by the number of days 

and multiplied by 365). 

4.4. Methodology 

The forest conversion and forest degradation change detection analyses consisted 

of three image processing stages: pre-processing, canopy damage classification and 

forest change detection (Figure 12). The image processing techniques of each stage 

are described in detail in the subsections below. 

4.4.1 Pre-processing 

a) Georeferencing and Registration 

Image registration is an important step in remote sensing change detection 

because pixel misregistration can introduce error in the quantification of land cover 

changes. First, the Landsat ETM+ image acquired in 1999 was georeferenced using 

30 image control points extracted from NASA GeoCover 2000 Mosaic 

(https://zulu.ssc.nasa.gov/mrsid/). Next, the georectified Landsat image was used as 
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the base image for registering the remaining images (Table 2). A minimum of 14 

image control points were used and the maximum root-mean-square error allowed 

was 1 pixel in the image registration process. The RMS varied from 0.53 to 0.97, 

which assures that the changes detected over time were not contaminated by 

misregistration (Verbyla and Boles, 2000). The software Environment for 

Visualizing Images – (ENVI 4.0; Research Systems, Boulder, CO) was used for 

these tasks (Figure 13). 

b) Atmospheric Correction 

The 1999 Landsat reference image was converted from encoded digital number 

(DN) to reflectance. First, the reference image was converted to radiance using the 

gains and offset provided in the image metafile. Next, the radiance image was 

converted to reflectance using the software Atmospheric Correction Now 4.0 

(ACORN:Analytical Imaging & Geophysics, Boulder, CO). The atmospheric 

parameters that cannot be estimated from the Landsat bands were estimated using a 

trial-and-error sensitivity analysis of a dark object reflectance (a lake). The estimated 

water vapor and the image atmosphere visibility were 40 millimeters and 25 km, 

respectively, for the reference image (Figure 12). 

c) Image Inter-calibration 

The other images (Table 2) were inter-calibrated to the reflectance image using a 

relative radiometric calibration approach (Roberts et al., 1998; Furby & Campbell, 

2001), regressing encoded radiance against reflectance in the reference image. This 
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technique assumes uniform atmosphere over the image scene, and that invariant 

ground targets can be found in the reference and the uncalibrated images. To account 

for spatially variable atmospheric contamination due to haze and smoke, the Carlotto 

(1999) technique was applied to those images that had significant contamination  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Image processing chain conducted in the forest change detection 
analyses. 
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prior to relative radiometric calibration. The Carlotto technique is based on the 

assumption that smoke and haze only adversely impact the visible bands, leaving the 

NIR and short-wave Infrared bands unchanged. Statistics are calculated for the entire 

image, in which average values for TM bands 1, 2 and 3 are calculated for each 

unique combination of TM bands 4, 5 and 7. After calculating these statistics, the 

original values for TM bands 1, 2 and 3 for a specific combination of bands 4 to 7 

are then replaced with the scene averages for that combination. This approach, 

developed by Carlotto (1999) has the effect of homogenizing contamination 

throughout a scene – thus clear sky portions of the image gain a slight amount of 

contamination, while contamination is significantly reduced in areas under smoke or 

haze. 

Typical invariant targets used included intact forest, second growth, green 

pasture, bare soil and water. Second growth and green pasture were only used as 

invariant targets for images that were no more than two years apart from the 

reference image date. The slopes and intercepts for the relative radiometric inter-

calibration were obtained from a linear regression that was estimated using the pixel 

mean values, extracted from a 3 by 3 pixel area, of the invariant targets for each 

band. These coefficients normalize the uncalibrated images to the reference images, 

converting Digital Numbers of the uncalibrated images to reflectance (Figure 12). 

4.4.2 Canopy Damage Classification 

Fraction images derived from Spectral Mixture Analysis – SMA – (Adams et al., 

1993) perform better than reflectance bands and vegetation indices in detecting forest 
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degradation caused by selective logging and forest fires (Souza Jr., et al., in press a). 

The Normalized Difference Fraction Index – NDFI was chosen as the spectral index 

for the analysis because it synthesizes all fraction images, derived from SMA, into a 

single band that enhances the detection and mapping of canopy damage (Souza Jr. et 

al., in press b; and Chapter III for details). For these reasons, fraction images and 

NDFI were chosen for mapping deforestation and canopy damage prior to the forest 

change detection analysis. 

SMA was applied to decompose the Landsat TM/ETM+ reflectance data of each 

pixel into fractions of green vegetation (GV), non-photosynthetic vegetation (NPV), 

Soil and Shade. Detailed information on how these models were computed and 

validated for these Landsat imagery data sets can be found in Chapters II and III. 

Once the fractions are obtained, the NDFI can be computed as: 

SoilNPVGV
Soil)(NPVGVNDFI

Shade

Shade

++
+−

=    (13) 

where GVshade is the shade-normalized GV fraction given by, 

Shade100
GVGVShade −

=     (14) 

The NDFI values range from -1 to 1. Forests of the study area have high NDFI 

values (i.e., > 0.75) and degraded forests showed moderate to low NDFI values (i.e., 

0.4 < NDFI < 0.75) (see Chapter III for details). 

The land cover types of interest for this study were: forest, clear-cut and forest 

with canopy damage. A decision tree classification (DTC) of fraction images and 

NDFI was used to create the base land cover map from the 1984 Landsat image that 
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was then used in the multi-temporal forest change analysis. Visual inspection of the 

DTC results, in conjunction with fraction color composite (R=Soil, G=GV, 

B=NPV), was performed to locate classification errors. Classification errors were 

then corrected manually. Common errors included small areas of green pasture or 

agriculture fields being misclassified as forest. The final 1984 classification base 

map had the following classes: Forest, Clear-cut and Non-forest (i.e., water and 

wetlands). The Non-forest class was used as a mask for all other images acquired 

after 1984 because I am not interested in quantifying changes associated within this 

class. 

The forest canopy damage class was mapped separately for each individual 

image using a contextual classification algorithm – CCA – (Souza Jr. et al., in press 

b). The locations of log landings, which are the storage area scraped clear of 

vegetation by loggers, are extracted from the Soil fractions (Souza Jr. and Barreto, 

2000; Monteiro et al., 2003). The CCA integrates the log landing locations with the 

NDFI image in a 2D-search program that looks for the range of values (0 to 0.75) in 

the NDFI images that are associated with canopy damages caused by selective 

logging and forest fires in this region (Souza Jr., et al., in review). In addition, large 

negative differences in NDFI values (i.e., < -0.75) detected between each pair of 

image dates (i.e., recent NDFI minus old NDFI) were used to map recently 

deforested areas and update the base land cover map (Figure 12). 
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4.4.3 Forest Change Detection 

The change detection analysis was done using an algorithm designed to detect 

and quantify the following forest changes: Forest to Clear-cut, Forest to Canopy 

Damage, Canopy Damage to Forest, and Canopy Damage to Clear-cut (Figure 13). 

Next, annual rates of deforestation and of forest degradation - represented by the 

forest canopy damage class – were computed by normalizing the changes estimated 

between the acquisition intervals of each pair of images to 365 days (Table 1). 

 

 

 

 

Figure 13. Forest Change detected with the multi-temporal analysis. 
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By 1984, 8.8% of the study had already been deforested while virtually none of 

the forest showed canopy damage. However, by 2004, deforestation had increased to 

28.2% of this region and 15% of the remaining forests showed canopy damage from 

recent logging and forest fire (Figure 14). Of the remaining forest (71.8% of the 

image), 15% had detectable canopy damage caused by selective logging and fires.  
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Because forest canopy damage caused by selective logging and forest 

firesrecovers within one to two years (Souza Jr. et al, in press a), the area mapped as 

Forest for individual years did not show a constant decrease, but a pattern of 

shrinking and expanding over time (Figure 14). Canopy Damage mapped in one year 

is likely to be mapped as Forest in the next year if the damaged forest is not further 

degraded by fire or converted to pasture and agriculture fields. For example, in 2000, 

Forest was 65% of the study area and the Canopy Damage was 12%. In 2001, the 

area classified as Forest increased to 70% because much of the Canopy Damage area 

mapped in 2000 had recovered and was mapped as Forest (Figure 14). 

The classifications also revealed that the area annually affected by forest 

degradation – classified in the study as Canopy Damage – varies from year to year 

and is substantial in many years (Figure 14). On average 3.7% of the forested area 

was classified as Canopy Damage each year. Seven years showed forest areas with 

Canopy Damage above the average over the twenty-year time period (1993, 1996, 

1998, 2000, 2001, 2003 and 2004). In the years 2000 and 2004 the Canopy Damage 

was more than 10% of the study area (i.e., > 15%¨of the total forest area). These 

statistics are for single date classifications and do not take into account older 

degraded forests which may have intact canopies but which are not compositionally 

or structurally equivalent to intact forest. Therefore, truly intact forest that has not 

been degraded by selective logging and forest fires, might be much smaller than the 

60% of the study area classified as Forest in 2004. Only a multi-temporal change 
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detection analysis can reveal how much forest area is actually free from disturbance 

over the last 20 years. 

4.5.2 Forest Change Detection 

Four forest change classes were detected and quantified with the multi-temporal 

analysis: Forest to Clear-cut; Forest to Canopy Damage (i.e., forest degradation); 

Canopy Damage to Clear-cut; and Canopy Damage to Forest (i.e., regeneration) 

(Figure 13). The area percent change of these class transitions was computed, 

relative to the study area, for each pair of dates (Table 8). Overall, the percentage of 

forest area that changed to Canopy Damage each year was, on average, two times 

larger than the area deforested (Table 8). The Forest to Canopy Damage change was 

three times larger than Forest to Clear-cut in three periods (1988-1989, 1995-1996, 

2003-2004). From 1997 to 1998 and from 1999 to 2000, forest change to Canopy 

Damage was very high, damaging an area larger than 1,400 km2 (5% of the study 

area; Table 8). 

On average, about 89% of the Canopy Damage class was mapped as Forest in 

the subsequent year. The remaining 11% was either deforested or subjected to a 

recurrent degradation event in the following year. The degraded forests (i.e., Canopy 

Damage class) contribute on average 16% of the total deforestation, representing on 

average 10% of the area annually affected by forest degradation. It is important to 

highlight that the forest change statistics presented on Table 8 do not include the 

percentage of old degraded forests converted by deforestation (Table 8). Because 

degraded forests can change to Forest within one to two years (Souza et al., in press 
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a), some of the Forest to Clear-cut changes may certainly be due to Canopy Damage 

that changed to Forest and then changed to Deforestation. A more detailed change 

detection analysis was performed to account for the percentage of old degraded 

forests that were converted by deforestation. 
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Figure 14. Areal percent of Forest, Canopy Damage and Non-forest 
quantified in the forest change detection analysis. 
 

4.5.3 Deforestation and Forest Degradation Rates 

The annual rates of deforestation and forest degradation (i.e., Forest to Canopy 

Damage) are presented in Figure 15. The average annual deforestation rate was less 

than 1% from 1984 to 2004. From 1992 to 1993 and 2002 to 2003, the deforestation 

rate was twice the average annual deforestation rate and from 2003 to 2004, the rate 

increased by three-fold relative to the average annual deforestation rate (Figure 15). 
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Figure 15. Annualized deforestation and forest degradation rates. 

 

The annual rate of forest degradation in the study area was always greater than 

the deforestation rates, except from 1998 to 1999 which showed a deforestation rate 

(1.2%) two times greater than the forest degradation rate (0.6%; Figure 15). The 

average annual forest degradation rate was 2.8%, almost three times the average 

annual deforestation rate. Six peaks of forest degradation were identified (1988-

1989, 1992-1993, 1995-1996, 1997-1998, 1999-2000, 2002-2003 and 2003-2004). 

Only the forest degradation peak from 1992 to 1993 showed a high corresponding 

deforestation peak. Three very high forest degradation rate peaks were detected 

(1997-1998, 1999-2000 and 2003-2004 (Figure 14). Most of the forest degradation 

mapped in these years showed Canopy Damage area associated with forest fires. 

When examining historical climate records most of these forest degradation peaks 

coincided with or are immediately after El Niño years (source: 

http://www.elnino.noaa.gov/). 
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Table 8. Percentage of Forest and Canopy Damage changes quantified in the forest change detection analysis 

relative to the study area. 

 
Time Interval 

(year) 

Number of 
Days between 

Image 
Acquisition 

Forest to 
Clear-cut 

(%) 

Canopy Damage 
to Clear-cut 

(%) 

Total 
Deforestation 

(%) 

Forest to 
Canopy 
Damage 

(%) 

Canopy 
Damage to 

Forest 
(%) 

1984 to 1985 379 0.5 0.0 0.5 1.7 0.0 
1985 to 1986 394 0.6 0.1 0.7 0.9 1.3 
1986 to 1987 318 0.3 0.0 0.3 0.4 0.8 
1987 to 1988 406 0.4 0.0 0.4 0.9 0.3 
1988 to 1989 380 0.6 0.1 0.7 2.7 0.5 
1989 to 1990 332 0.2 0.1 0.3 0.4 2.5 
1990 to 1991 330 0.2 0.0 0.2 0.5 0.8 
1991 to 1992 383 0.4 0.0 0.4 1.5 0.6 
1992 to 1993 391 1.9 0.4 2.2 3.0 0.5 
1993 to 1994 306 0.5 0.0 0.5 0.7 3.2 
1994 to 1995 341 0.6 0.1 0.7 2.0 0.7 
1995 to 1996 378 0.8 0.1 1.0 3.5 1.0 
1996 to 1997 394 1.1 0.7 1.8 1.8 2.5 
1997 to 1998 301 0.7 0.1 0.8 5.7 1.2 
1998 to 1999 433 1.1 0.3 1.4 0.7 6.5 
1999 to 2000 307 1.0 0.1 1.1 11.0 0.5 
2000 to 2001 402 0.6 0.3 0.9 1.5 6.2 
2001 to 2002 332 0.7 0.2 0.8 1.3 5.2 
2002 to 2003 386 1.8 0.3 2.1 2.8 1.4 
2003 to 2004 299 2.3 0.2 2.5 8.2 1.1 
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4.5.4 Canopy Damage Age and Frequency 

The time series data set were used to generate a complete Canopy Damage age 

map by combining all the individual annual Canopy Damage maps and assigning 

degraded forest pixels the year of the first degradation event. The Canopy Damage 

age map allowed us to identify and quantify the amount of old degraded forest (i.e., 

degraded more than one year ago) that was converted by deforestation. This type of 

analysis is useful for overcoming the difficulties in detecting the percentage of old 

degraded forests converted to deforestation, discussed in the section 4.5.2, and 

provides a better estimation of the percentage of intact forest in the region. 

Figure 16 shows two subsets (15km x 15 km) of the study area with examples of 

Canopy Damage age maps of forest areas that were predominantly degraded by 

selective logging (Figure 16a) and forest fires (Figure 16b). These examples show 

that most of the forest area was degraded between 1984 and 2004. The Canopy 

Damage mapped in 2004 (i.e., dark blue areas in Figure 16) represents less than 10% 

of the total area affected by forest degradation. The cumulative Canopy Damage area 

represents 23% of the study area, or 32% of the total forest area mapped in 2004. 

The single-date classification for 2004 mapped 11% of the study area as Canopy 

Damage (15% of the forest area). Therefore, single-date classification 

underestimates the cumulative Canopy Damage area by 8%, but when considering 

the average area mapped as Canopy Damage (3.7%) over the twenty-year period, the 

underestimation would certainly be much higher for other years. 
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Figure 16. Canopy Damage age map of two sub-sets (15 km x 15 km) of the 
study area. In (a) selective logging damage is more common and in (b) forest 
fires are the major causes of canopy damages. 

 

The number of times a forest was classified as Canopy Damage was also 

computed (Figure 17). Fifty percent of the total forest area mapped as Canopy 

a

b) 

a) 



 

 100

Damage during the twenty-year time period occurred only once. Forest degradation 

events were detected twice for 20% of the total Canopy Damage area, and the 

remaining 30% were subjected at least to three degradation events (Figure 17). 

These results show that selective logging and forest fire recurrence are common in 

this region affecting 50% of the degraded forests. 
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Figure 17. Average areal percentage of  the Canopy Damage class converted 
by deforestation as a function of how many times the forest had been degraded. 
 

Traditional change detection analysis calculates change statistics for each pair of 

images. Because degraded forests due to selective logging and forest fires change 

back to forest spectral signatures within one to two years (Souza Jr. et al, in press), 

this type of change detection approach does not allow for the estimation of how long 

it takes for a degraded forests to be converted by deforestation. The canopy age map 
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was also used to overcome this type of problem. First, the first pair of Canopy 

Damage maps (i.e., from 1984 and 1985) were combined to generate the first 

Canopy Damage age map and changes of the Canopy Damage to Deforestation were 

computed. At this stage, only one-year Canopy Damage areas existed. Then, the first 

Canopy Damage age was updated with the next Canopy Damage map (i.e., 1986) 

and the Canopy Damage to Deforestation conversion was calculated. At this second 

stage, two classes of Canopy Damage age existed: one year (i.e., Canopy Damage in 

1985) old and two year old (i.e., Canopy Damage in 1984); and two estimates of one 

year old Canopy Damage to Deforestation (i.e., from 1984 to 1985 and from 1985 

and to 1985). This process of updating the Canopy Damage age map with the 

subsequent year maps continues and the change statistics are computed until the last 

image date is reached. The result is a very large change detection matrix with several 

estimates of Canopy Damage to Deforestation for each Canopy Damage age that 

were averaged and summarized on Figure 18. 

The Canopy Damage age time series analysis revealed that, on average, over the 

twenty year period only 5% of the degraded forests were converted by deforestation 

to pasture or agriculture one year after the degradation event (Figure 18). Most of the 

degraded forest conversion occurs in the second year accounting for an average of 

20% of the total area converted. About 55% of the degraded forests were converted 

by deforestation between the third and tenth years, and degraded forests with more 

than 10 years contribute, on average, with 25% (Figure 18). 
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Figure 18. Average Canopy Damage area converted by deforestation as a 
function of degradation age. The grey regions represent the percentage of 
degraded forest converted by deforestation, while the white one the cumulative 
percentage of degraded forest converted by deforestation. 

 

4.6. Discussion 

There are several change detection techniques that can be used to quantify land 

forest cover changes (e.g., image differencing, post-classification change detection, 

multi-date unsupervised classification; Coppin and Bauer, 1995). Image differencing, 

which is computed as the difference between a recent and an old image, has also been 

tested. Image thresholds are defined and applied to the difference image to classify 

forest areas that did not change from those that were subject to changes between the 

time interval. Both GV and NDFI images were used as variables in the image-

differencing algorithm. This technique has the disadvantage of detecting both natural 

and anthropogenic changes. Misclassification of natural canopy damages as 
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anthropogenic canopy damage might also happen with multi-date unsupervised 

change detection. Because the CCA uses contextual information from selective 

logging (i.e., log landings) to map canopy damage areas, canopy damages associated 

with natural forest changes are not mapped. Therefore, post-classification change 

detection is more suitable because it uses classified images that contain the forest 

whose changes I am interested in quantifying.  

The remote sensing techniques presented in this study have the potential to be 

extended to other areas in the Amazon region. There are, however, some challenges 

to reproducing these techniques in this region. First, not all regions have optical 

satellite images available every year (Asner, 2001). Another important issue 

associated with time-series analysis has to do with the generalization of 

classification rules that can be ported through time and across regions. Atmospheric 

correction plays an important role in the success of generalized classifiers 

(Woodcock et al., 2001). The radiometric normalization techniques perfected by 

Roberts et al. (1998) coupled with the haze correction proposed by Carlloto (1999) 

can be used minimize the atmospheric noise. One remaining challenge to the 

application of CCA for detecting canopy damage on very large areas, such as the 

Amazon region, has to do with the SMA. Physically meaningful SMA models, 

which are required for NDFI computation, depend on the right selection of 

endmembers. Small (2004) has demonstrated that generic endmembers can be found 

in the Landsat ETM+ reflectance space which makes it a promising tool for 

overcoming the challenges to generate consistent fraction images over the entire 

Amazon basin. 
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4.7. Conclusions 

The long term remote sensing of canopy damage detection and change analyses 

showed that forest degradation surpasses, on average, deforestation rates by three-

fold in the Sinop region. I have also demonstrated that deforestation and forest 

degradation are independent events and, therefore, must be accounted for separately 

to capture the total forest area under anthropogenic pressure; that single date canopy 

damage classification partially captures the amount of degraded forests; and finally 

that recurrent logging and forest fires events were detected in 50% of the degraded 

forests. The techniques for mapping canopy damage associated with anthropogenic 

forest degradation and the change detection techniques presented in the study have 

the potential to be applied in other tropical forests, contributing to the understanding 

of the real state of these forested areas. 
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CHAPTER V: Generic Spectral Mixture Analysis and Decision 

Tree Classification for Monitoring Forest Changes in the 

Brazilian Amazon 

5.1. Introduction 

Our research group has been engaged in a project to develop automated image 

classification techniques for mapping land cover changes in the Brazilian Amazon as 

part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia – (LBA). 

Two broad types of land cover changes can be found in the region: land-cover 

conversion and land-cover modification. Deforestation and second growth are 

examples of land cover conversion whereas selective logging and forest fires are 

examples of land modification. The former examples represent a complete change of 

the original land cover since forest is converted to pasture or agricultural fields. The 

latter examples represent a partial modification of the original land cover because 

the original forest structure and composition is temporarily or permanently changed, 

but is not replaced by other type of land cover. 

An image processing chain to process Landsat images to map land-cover types 

has been developed and tested in two distinct regions in the Brazilian Amazon- 

Marabá in the State of Pará, Eastern Amazon (Roberts et al., 1998); and in large 

areas of the State of Rondônia, Southeast Amazon (Roberts et al., 2002). The 

following land cover types were mapped in these two regions: Primary Forest,  
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Pasture, Green Pasture, Second Growth, Water, Urban and Rock/Savanna. The 

image processing chain to map these land cover types is: i) retrieve reflectance; ii) 

select image and reference endmembers; iii) perform radiometric intercalibration; iv) 

spectral mixture analysis – SMA; and v) decision tree classification – DTC. In 

addition, a protocol for map accuracy assessment has been proposed which uses 

aerial videography detailed mosaics as reference and correct the sources of map 

accuracy errors (Powell et al., 2004). 

The image processing chain described above has also been tested to map land 

cover modification associated with forest degradation in two other regions in the 

Brazilian Amazon: Paragominas also in the State of Pará, Eastern Amazon (Souza Jr. 

et al., 2003); and Sinop in the State of Mato Grosso, Southern Amazon (Souza Jr. et 

al, in press a). The techniques, particularly SMA and DTC, have improved the 

detection and mapping of forest changes associated with selective logging and 

burning. Finally, a novel spectral index based on the fraction images derived with 

SMA has also been proposed and revealed to be more effective in enhancing the 

detection and mapping of forest degradation in the Amazon region (Souza Jr. et al., 

in press b; Chapter III). 

The research progresses described above to map land cover conversion and land 

cover modification in the Amazon region represent a great step towards the 

development of an automatic and generic image classification approach for 

monitoring the Amazon region. By generic classification I mean, an algorithm that is 

both spatial and temporally robust, based on a standardized set of data and  
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classification rules that can be used to map land cover changes within the same 

environmental conditions through time. Generic classification to monitor forest 

conversion has been proposed in the literature (Woodcook et al., 2001), but has not 

been tested thoroughly in the Amazon region. 

Fraction images derived from SMA are physically interpretable and have been 

used to identify and map land-cover changes in the Amazon (Adams et al., 1995; 

Roberts et al., 1998, 2002; Souza Jr. and Barreto, 2000; Souza Jr. et al. 2003; Lu et 

al., 2003; Numata et al. 2003). The greatest challenge regarding the use of fraction 

images in generic classification has to do with the generation of standardized 

fractions through time and space. The problem of temporal standardization has been 

solved previsously with the use of reference endmembers and the application of 

radiometric inter-calibration techniques (Roberts et al., 1998, Roberts et al., 2002). 

One difficulty with this approach is the acquisition of reference endmembers which 

requires a well-calibrated spectral library representative of the land-cover types 

found in the areas of interest. An alternate approach based on the exploration of the 

spectral topology space has been proposed to define a standard set of image 

endmembers that can be used to generate spatially consistent fractions worldwide 

(Small, 2004). 

Among the image classification techniques, DTC has already been tested 

successfully in large areas in the Amazon region using time-series of fraction images 

(Roberts et al, 2002; Souza Jr., et al., 2003). DTC has several advantages when 

compared with other image classification algorithms. First, DTC is a non-parametric  
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classifier which means it requires no a priori data distribution model (Friedl and 

Brodley, 1997), unlike a maximum likelihood classifier which requires normally 

distributed data (Richard and Jia, 1999). The decision rules generated by a DTC are 

more intuitive and more easily interpreted by both image analyst and final users 

(Murthy, 1998). This is not the case for neural networks, which may outperform 

DTC, but works as a black box (Richard and Jia, 1999). Another important attribute 

of the DTC is that the decision rules provide knowledge about the variables used in 

the classification (Murthy 1998). 

DTCs, on the other hand, are very sensitive to the training sample used to 

generate the decision rules. As a result, any small change to the training data will 

generate a different set of rules for classifying the data (Breiman et al., 1984; 

Murthy, 1998). Another potential problem with the DTC is that the decision rules are 

created by a recursive partition algorithm that optimizes the data partition from the 

top to the bottom of the tree. Therefore, there is no guarantee that the terminal nodes, 

which are the nodes that define the classification, are the optimum partitions for 

classifying the data set (Breiman et al., 1984). Genetic algorithms – which mimic 

biological evolution mechanisms – have been used to overcome the data training 

sensitiveness and the top-to-bottom node optimization problem of DTC. Examples 

of genetic DTC include Sörensen and Janssens (2003), who used genetic DTC in 

data mining applications; Angenelli et al. (2001) who used it to extract information 

from scanned documents; and Delise who used it (source: http://ai- 



 

 109

depot.com/Tutorial/DecisionTrees.html) to improve the classification of 

environmental risk levels of chemical compounds.  

Here I propose a generic classification approach for monitoring the Brazilian 

Amazon forests. The generic classification utilizes a standardized set of fraction 

images obtained with image endmembers defined based on the topology of the 

Landsat spectral space as proposed by Small (2004). The classification rules are 

obtained using a genetic algorithm to generate DTC  rules. The generic classification 

was applied to 40 Landsat scenes covering several sawmill centers in the Brazilian 

Amazon (Figure 19). The sections below describe the methods used to generate 

standard fraction images for the Amazon region and the algorithm used to run 

genetic decision trees. 

5.2 Methods 

5.2.1  Spectral Mixture Analysis – SMA 

a) Background 

SMA decomposes a spectral mixture into fraction of purer material, known as 

endmembers, which are expected to be found within the instantaneous field of view 

(IFOV). SMA has been applied extensively in the Amazon region to generate 

fractions images that are further used as variable in image classification (Adams et 

al., 1995; Roberts et al., 1998 and 2002; Souza et al., 2003; Lu et al., 2003) or to 

estimate biophysical properties of vegetation and soils (Asner et al., 2003; Numata et 
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al., 2003; Souza et al., 2003). Most of the studies used scene-specific image, 

endmembers making direct comparison of fractions difficult. 

Reference endmember spectra have been proposed to standardize the fraction 

results over large areas (Roberts et al, 2002). However, reference endmember spectra 

are not available for most of the Amazon regions and also depend on the selection of 

image endmembers to calibrate the reference endmember spectra to the image data 

spectra (Roberts et al., 1998). Bateson et al. (2000) have proposed an automated 

SMA approach that utilizes a very large endmember spectral library – endmember 

bundles – to generate fractions; and Asner et al. (2004a, 2004b) used it in a Monte 

Carlo simulation approach in mixture models. This technique generates a range of all 

possible values of each fraction for each pixel. Mean fraction images have been used 

to characterize land-cover composition (Asner et al., 2003) and to detect forest 

changes associated with selective logging (Asner et a., 2004b). The Monte Carlo 

SMA has the disadvantage of being computationally intensive and does not provide 

one single standard fraction value. The mean fraction images that have usually been 

used as the standard fraction generated by the Monte Carlo SMA approach (Asner et 

al., 2003) may not be the best fractional decomposition of mixed pixels. 

Small (2004) showed that it is possible to obtain standard global endmembers 

from the Landsat n-dimensional spectral space. The methodology proposed by Small 

(2004) was applied to determine generic image endmembers of green vegetation 

(GV), non-photosynthetic vegetation (NPV) and soil to generate standard fraction 

images of these endmembers over the Brazilian Amazon. These endmember were 
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used successfully to identify, map and monitor forest changes associated with 

selective logging, forest fires and deforestation in the Southern Brazilian Amazon 

(Souza Jr. et al., in press a; in press b; Chapters II and III, respectively). In addition, 

a novel spectral index computed with these fractions has been developed to enhance 

detection and mapping of forest changes and degradation (Souza Jr., et al. in press b; 

Chapters III and IV). 

b) Generic Endmembers for the Amazon Region 

Generic image endmembers for Landsat images were obtained following the 

methods summarized in Figure 20. Most of the techniques shown in Figure 20 are 

described in detail in the previous chapters. First, the images were georectified using 

image control points extracted from Shuttle Radar Topographic Mission (SRTM) 

images. Next, the images contaminated by haze were corrected using a technique 

proposed by Carlotto (1999), followed by atmospheric correction. Four image 

subsets (500 x 500 pixels) were selected in the reflectance images to run the PPI 

algorithm to find the pixels that describe the convex hull of the n-dimensional 

Landsat spectral space. All data extracted using the PPI of each image were 

combined and visualized using scatter matrix plots (Figure 21). The scatter matrix 

made it possible to define the best set of scatter plots for identifying the generic 

image endmembers. The best pairs of bands were bands three and four, four and five 

and five and seven (Figure 22). Six types of endmembers were identified: GV, NPV, 

soil, shade, sand and urban (Figure 22). Finally, NDFI was computed for each  
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Figure 19. Landsat scenes processed with the standard image endmembers to generate fraction images.
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Figure 20. Image processing chain to generate standard fraction and NDFI 
images over the Amazon region.
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Figure 21. Scatter plot matrix showing the PPI results. 
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Figure 22. Image scatter plots used to identify standard image endmembers 
for the Brazilian Amazon.
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Landsat image shown in Figure 19 using GV, NPV, Soil and Shade standard 

endmembers 

5.2.2 Genetic Decision Tree Classification 

a) Decision Trees 

Decision trees generate hierarchical classification rules obtained through a 

recursive partition process of classification training samples (Friedl and Brodley, 

1997; Murthy, 1998). The decision tree structure is composed of classification or 

partition rules, nodes, branches and classes (Figure 23). The classification rules are 

composed of one variable (Vi), an operator (< or ≥) and a numeric value that 

represents the optimal binary partition, or split, of the variable Vi. Two types of 

nodes can be found: internal and terminal nodes. The internal nodes contain the 

classification rules that partition the data to the right when Vi is greater or equal to 

the partition value; and to the left when Vi is smaller than the partition value. By 

convention, the classification rules are presented with the smaller sign (<). The 

internal nodes are connected by branches from the top of the tree (i.e., root node) to 

the terminal nodes that contain the classes that will be assigned to the data set 

(Figure 23). 

The decision trees can be symmetric or asymmetric. Asymmetric trees are more 

common, but for the purpose of presenting the tree component and properties a 

symmetric tree example is presented (Figure 23). The tree level (l=0,1,2,…,n) 

defines the depth of the tree. The number of nodes at each level l is given by 2l
. For 
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example, there is only one internal node at the first level (l=0; 20=1), two in the 

second level (l=1; 21=2) and so on. 

Figure 23. Binary decision tree classification components and structure. 

 

The data partition of each internal node happens when an optimal binary splitting 

value is found. A recursive partition algorithm is applied until the classification 

criterion is obtained. There are several methods applied to stop the recursion process 

from reaching the classification, i.e. the terminal node, including the minimum node 

size, data deviance and tree complexity (Murthy, 1998). Even though there are 

several binary partition recursive algorithms, they all have one characteristic in 

common: the binary partition is optimized from the top to the bottom of the three. 

This means that the first nodes are more optimized to split the data set where the 
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deep node rules have sub-optimal splitting rules. The top-to-bottom splitting 

optimization has been considered one of the greatest disadvantages of decision trees 

because optimal classification rules are not obtained with this process (Lawrence et 

al., 2004). If the first level’s internal nodes were sub-optimally generated, the 

terminal nodes might be more optimal, thus generating better classification rules. 

Decision trees are also highly sensitive to the quality of the classification training 

data. Data noise and small changes in the data set will generate complete different 

classification rules). Finally, a decision tree requires classification training samples 

of equal size (Murthy, 1998). The next subsection presents a promising approach for 

overcoming these decision tree problems. 

b) Genetic Decision Tree Classification Algorithm 

Genetic algorithms are computer programs that mimic biological evolutionary 

mechanisms (Russel and Norvig, 2003). There are five major steps to implement 

genetic algorithms: 1) random selection, 2) evaluation, 3) selection of the best 

individuals, 4) mutation and 5) final selection (Figure 24). The genetic decision tree 

classification algorithm (GDTCA), implemented to overcome the decision tree 

problems described in the sub-section 5.2.2.a, is based on the following steps: 

Step 1: generation of one hundred random decision trees based on uniform 

random selection of 50 to 70 percent of a very large classification training sample 

(i.e., more than 1000 pixels per class). 

Step 2: evaluation of the best trees based on the accuracy to classify the training 

samples used to generate the decision trees. 
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Step 3: biased selection of the twenty best trees using a linear rank fitness (LRF) 

index and roulette-wheel (Whitley, 1989): 

LRF = 2 – SP + 2 (SP -1) * (Ind - 1)/(N -1)  (15) 

where, SP is the selection pressure which gives the probability of the best tree being 

selected compared to the average probability of selection of all trees. Ind is the 

inverse rank position from the most accurate to the least accurate tree; and N is the 

total number of trees (N=100). For SP equals 2, then: 

LRF = 2 * (Ind - 1)/(N -1)     (16) 

Next, the selection probability is computed for each tree: 

P = LRFi / ∑(LRF)      (17) 

for i = 1,…,N. 

Therefore, for SP equals 2 and N equals 100 (i.e., 100 trees) the best tree has Ind 

value of 100 and an LRF value of 2. The P value is 0.02 and the average probability 

of selection of all trees is 0.01, giving these trees twice the probability of selection 

relative to the average. Finally, the selection probability of each tree is mapped to 

contiguous segments of a line, such that the size of each segment of a tree is equal in 

size to its probability. Thus, a random number is generated using a uniform 

distribution function from 0 to 1 to select a tree for mutation. The tree whose 

segment spans the random number is selected for mutation. Twenty trees were 

selected for mutation.  

Step 4: mutation of the twenty trees selected in step 3. For each tree selected, one 

internal node is selected randomly. Next, one variable Vi is selected randomly from 
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the list of the variables that belong to the tree selected for mutation. A new variable Vj 

is randomly selected from the list of all existing variables in the data set. Finally, a 

random splitting value is also randomly selected from the list of possible splits. The 

new randomly selected variable and value are combined to create a new splitting rule 

to substitute the original optimal splitting rule. The decision tree is reconstructed 

from the selected internal node to terminal nodes. 

Step 5: the original one hundred trees are combined with the twenty mutated 

trees and the best tree is selected based on tree accuracy to classify the training 

sample. 

 

 

 

 

 

 

 

 

 

 

Figure 24. Genetic decision tree algorithm. 
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Steps one through five define one tree generation. One thousand tree generations 

were computed using this genetic algorithm. The GDTCA was based on the 

algorithm proposed by Delisle (2004). The overall assumption of the GDTCA is that 

a mutation process may occur that will improve the tree accuracy and that after the 

Nth generation, a more robust tree population will be created. The mutation process 

was implemented to make the top-level nodes sub-optimal and the bottom-level 

nodes optimal, overcoming one of the decision tree limitations. A second limitation 

overcome is that the GDTCA reduces human bias in selecting the decision tree 

classification training sample. The GDTCA was run using as variables the standard 

fraction images and the NDFI images. The best tree obtained with the GDTCA was 

used for classifying the Landsat images showed on Figure 19. 

5.4 Results 

5.4.1 Standard Fraction Images 

For the purpose of monitoring the Amazon forests only GV, NPV, Soil and 

Shade endmembers were selected to run SMA models. Figure 25 shows these image 

endmembers, their respective endmember bundles obtained with the PPI results and 

the mean of the endmember bundles. SMA results were evaluated as described in 

Chapters II and III. 

Fraction values of dense forests, transitional forests and open forests were 

extracted to test if the fractions obtained with the standard endmembers were 

spatially consistent. The forest polygons were selected with the aid of a regional 
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forest map (IBGE, 2005). The polygons were located in flat terrain to reduce 

topographic illumination effects. GV fractions were shade-normalized and the NDFI 

values were also calculated for each forest type. The means and standard deviations 

of these forest types are shown in Table 9. 

NPV and Soil fractions showed spatially consistent fraction values for each forest 

type. NPV means varied from 4 to 5% in dense forests, whereas the Soil means varied 

from 1 to 3%. Transitional and open forests also showed small variations among the 

NPV and Soil means obtained with the standard endmembers (Table 9). 

Figure 25. Image endmembers defined based on the topology of the Landsat 
n-dimensional spectral space. Endmember bundles of each endmember were 
obtained from the PPI results. The mean of each endmember bundle is plotted 
in a dashed line. 
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GV and Shade fractions showed the greatest spatial variation in mean values 

(Table 9). In dense forests, the GV means ranged from 44 to 52%, and the Shade 

fraction means varied from 38 to 52%. The spatial variation of GV and Shade was 

higher in open forests, reaching 12% and 10%, respectively. Transitional forests 

showed the most spatially consistent mean values obtained with the standard image 

endmembers. 

The mean spatial variation of the fraction was reduced in the shade-normalized 

GV and NDFI (Table 9). The ranges of the shade-normalized GV means were 5% 

for dense forests and 4% for transitional and open forests (Table 9). The NDFI 

means range was 0.05 for dense and transitional forests, and 0.03 for open forests. 

The NDFI means shown in Table 9 for all vegetation types are above the 0.75 

threshold used to detect canopy damages in the transitional forests of the Sinop 

region (Souza Jr., et al., in press b; Chapter III). 

The statistical results shown on Table 9 leads to the conclusion that the standard 

image endmembers generated spatially consistent fractions of NPV and Soil and that 

shade-normalization and the use of NDFI reduced the illumination variation among 

the scenes. Examples of fraction color composites (R=NPV, G=GV, B=Soil) and 

NDFI images of four subset regions are shown for Paragominas (Figure 26a), 

Santarém (Figure 26b) and Ji-paraná (Figure 26c). Most of the forest canopy 

damages can be identified in the fraction color composites. However, old selectively 

logged areas are better identified in the corresponding NDFI images. In the Ji-paraná 

region, for example, logging roads and log landings cannot be easily identified in the 
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fraction color composite, but the NDFI image allowed the identification of these 

features (Figure 26c). 

 

 

Table 9. Means and standard deviations of standard fraction images and 
NDFI for dense forest, transitional forest and open forest found in different 
regions in the Brazilian Amazon. 

Forest Type Path/Row GV NPV Soil Shade GVn NDFI 

227/62 48 
(3) 

4 
(2) 

1 
(1) 

47 
(3) 

91 
(3) 

0.90 
(0.04) 

228/63 45 
(4) 

4 
(2) 

1 
(1) 

50 
(4) 

89 
(3) 

0.88 
(0.04) 

230/62 44 
(2) 

5 
(2) 

2 
(1) 

49 
(3) 

86 
(3) 

0.85 
(0.04) 

236/66 54 
(3) 

5 
(2) 

3 
(1) 

38 
(3) 

88 
(3) 

0.84 
(0.04) 

Dense 
Forest 

232/65 52 
(3) 

4 
(1) 

1 
(1) 

43 
(3) 

91 
(2) 

0.89 
(0.03) 

226/67 53 
(4) 

1 
(1) 

1 
(1) 

45 
(3) 

96 
(2) 

0.96 
(0.03) 

226/69 52 
(3) 

2 
(1) 

1 
(1) 

45 
(3) 

95 
(2) 

0.95 
(0.02) 

227/69 51 
(4) 

3 
(1) 

1 
(1) 

45 
(3) 

93 
(3) 

0.92 
(0.03) 

Transitional 
Forest 

228/68 51 
(3) 

1 
(1) 

0 
(1) 

47 
(2) 

97 
(2) 

0.97 
(0.02) 

227/63 44 
(3) 

5 
(1) 

1 
(1) 

50 
(3) 

89 
(3) 

0.88 
(0.03) 

Open 

231/66 56 
(4) 

3 
(1) 

2 
(1) 

40 
(4) 

93 
(3) 

0.91 
(0.03) 
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a) Paragominas,Pará State - 223/62
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b) Santarém, Pará State - 227/62
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Figure 26. Examples of fraction (R=NPV, G=GV, B=Soil color composite) and NDFI images obtained with the 
standard image endmembers for areas Paragominas (a), Santarém (b) and Ji-paraná (c). 

c) Ji-paraná, Rondônia State - 231/67 
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5.4.2 Generic Decision Tree Classification 

Three types of decision tree classifications were run using the GDTCA. The first 

type of decision tree was constructed to generate a forest/non-forest map given that a 

forest mask is required for the successful application of the canopy damage 

classification described in Chapter III. The land-cover classes used to generate the 

forest mask were: forest, clear cut second growth and urban. The other two decision 

tree classifications aimed at sub-classifying the canopy damage areas. Another 

classification scheme was attempted based on the type of degradation which 

included the following classes: forest, logging and burning. 

The accuracy values to classify the training data of the one hundred random trees 

used as input in the GDTCA varied from 87% to 92% for the Land Cover 

classification (Table 10). The mean accuracy for the Land Cover classification was 

89.4%, and forty-one random trees had accuracy between 89 and 90% (Table 10). 

This means that most of the random trees generated for the Land Cover classification 

would be closer to the mean accuracy of the one hundred random trees. 

The accuracy values of the one hundred random trees for the Forest Degradation 

and classifications varied between 75 and 80% (Table 10). The Forest Degradation 

classification produced the low accuracy for the random trees, with a mean accuracy 

of 77.4%. Most of the random trees produced accuracy near the mean accuracy value 

(Table 10). The chance of generating one tree with accuracy higher than the mean 

accuracy was small. For example, the highest accuracy constructed randomly was 

91.8% for the Land Cover classification and only 5 out of 100 trees showed accuracy 
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in 91 to 92% range (Table 9). For a more challenging classification such as the forest 

degradation, only 7 trees out of one hundred showed accuracy values higher than the 

mean (Table 9). 

 

Table 10. Accuracy of the random trees for land cover, forest degradation 
and degradation intensity. 

 
Land Cover Classification Forest degradation 

Classification 

 
Accuracy range 

(%) 
Number of 

Trees 
Accuracy range 

(%) 
Number of 

Trees 
 87-88 6 75-76 5 

 88-89 29 76-77 41 

 89-90 41 77-78 47 

 90-91 19 78-79 6 

 91-92 5 79-80 1 
Mean 89.4  77.2  

Minimum 87.6  75.4  
Maximum 91.8  79.4  

 

 

The tree mutation implemented in the GDTCA improved the accuracy of the trees 

constructed randomly. Figure 27 shows the minimum and maximum accuracies of 

each tree generation and the minimum and maximum accuracies of each mutation 

process. The minimum accuracy increased by 5% for both Land Cover and Forest 

Degradation classification schemes and by 2% only for the Degradation Intensity. 

The improvement for the maximum accuracy of the 1000th tree generation relative to 

the maximum accuracy of the random trees was smaller was less than 2% (Figure 27).
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Figure 27. Accuracy of the tree generations and mutated trees for the Land 
Cover (a) and Forest Degradation (b) classification schemes. 

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0 100 200 300 400 500 600 700 800 900 1000
Tree Generation

A
cc

ur
ac

y 
(%

)

Minimum generation accuracy
Maximum generation accuracy
Minimum mutation accuracy
Maximum mutation accuracy

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0 100 200 300 400 500 600 700 800 900 1000
Tree Generation

A
cc

ur
ac

y 
(%

)

Minimum generation accuracy
Maximum generation accuracy
Minimum mutation accuracy
Maximum mutation accuracy

a)

b)



 

 131

5.4.3 Cross-Regional Comparison 

Canopy damage caused by selective logging and forest burning happened most 

intensively in two regions. The first one is the NE region located in the state of Pará, 

encompassing the Landsat scenes (n=8) 225/61-62, 224/61-63 and 223/61-63. Two 

important sawmill centers are located within this region: Paragominas and Tailândia 

(Figure 19). Of the eight scenes covering this region, only three showed extensive 

signs of selective logging impacts (224/62, 223/62-63) (Figure 19). In 2001, on 

average 4% (i.e., 1,300 km²; 185 km x 185 km per scene) of canopy damage was 

detected per scene in this region. The scenes covering the lowland regions, known as 

varzea (225-223/61) showed very few logging signatures, but it is very likely that 

logging is happening or had happened at high intensity in this region but cannot be 

detected using the techniques presented in this dissertation. The reason for not 

detecting the logging scars is that detection is difficult in flooded forests due to the 

lack of soil and NPV signals. Other remotely sensed data such as microwave radar or 

LIDAR images could potentially detect the forest gaps caused by logging in this type 

of region. 

The other region with large impacts of canopy damage due to selective logging is 

located in the South, where the Sinop county is located. This region is covered by the 

following scenes: 229/67-69, 228/67-68, 227/67-69 and 226/67-69 (n=11) (Figure 

19). The average canopy damage area per scene in this region was 3%. The most 

impacted scenes are 226/68 and 226/69. The 226/69 scene is the Sinop scene used in 
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this research to develop the remote sensing techniques to detect canopy damage due 

to selective logging and forest fires (Chapters II, III and IV). 

The other scenes showed low signals of canopy damage due to selective logging. 

These scenes are clustered into three regions: Central (n=4), SE (n=7) and SW 

(n=10) regions (Figure 19). In the Central region, less than 1% of the 227/62 was 

mapped as canopy damage and the other three scenes showed virtually no signs of 

selective logging spatial signature and canopy damage. In this region, logging 

activity started growing recently and it is expected that more signs of canopy 

damage due to logging will appear in the future. 

In the SE and SW regions there is no sign of selective logging. For example, in 

the 231/67 scene, incipient canopy damage was detected with the NDFI technique 

(Figure 26c). The lack of signs of canopy damage associated with selective logging 

in these regions raises the following question: what is the source of timber for the 

sawmill centers located in these regions? It is likely that deforestation is the major 

source of timber to the sawmill industries located in the SE and SW regions that 

showed very low or none signs of selective logging. Deforestation is one of the 

sources of timber in the Amazon region  and is the easiest and cheapest way to put 

legal timber in the market (Uhl et al., 1997). The high value timber species are 

usually harvested prior to deforestation, and the Brazilian Environmental Agency, 

IBAMA, provides authorization to commercialize them. Deforestation rates are also 

high in these regions (INPE, 2003). 
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It is important to highlight that the hypothesis that deforestation is the main 

source of timber to many sawmill centers located in the Amazon region disagrees 

with previous study conducted by Nepstad et al. (1999). These researchers used 

information on the total volume of timber consumed in the sawmill centers and 

transportation cost of timber to estimate the forest area affected by selective logging 

impacts. The area estimates generated in this dissertation cannot be compared 

directly with the forest degradation area estimated by Nepstad et al. (1999) because 

they were made for different years. Nepstad et al. (1999) estimated that the forest 

area degraded by selective logging annually was in the range of 10-15 thousand km². 

The estimate obtained with the NDFI-CCA approach for 2001 was about 20 

thousand km² and includes canopy damages associated with selective logging and 

forest fires. Nepstad et al. (1999) estimate for forest fires impacts is much higher (80 

thousand km²/year). Therefore, it is very likely that the total annually degraded 

forest area found by these researchers (90-95 thousand km²/year) is overestimated. 

One of the reasons why this estimate is too high is because the source of timber was 

not taken into consideration in their analyses. Further research that integrates 

socioeconomic field and maps derived from satellite images is need and might 

reduce the uncertainties in this subject. 

5.5 Discussion 

Standard fractions images of GV, NPV, Soil and Shade were generated with 

generic image endmembers obtained from the reflectance six-dimensional space of  
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the Landsat sensor. The generic endmembers generated physically meaningful 

fraction estimates for all the Landsat scenes processed (Figure 19). Examples of 

fraction images of GV, NPV and Soil for Both NPV and Soil for Paragominas, 

Santarém and Ji-paraná are shown on Figure 26. The fractions values were non-

negative and spatially consistent (e.g., soil values were high and NPV was low on 

dirt roads); Soil fraction revealed the log landings and roads and the GV and NPV 

the canopy damaged areas. The calculation of the NDFI index using the standard 

fractions also produced consistent NDFI values across the Amazon region (Table 10, 

Figure 26). 

There is a potential for defining standard reference endmembers using the 

standard image endmembers generated with this research. Reference endmembers 

are spectrally purer than the image endmembers and, theoretically, could generate 

more accurate fraction estimates. However, a robust spectral library is required for 

use in the algorithm proposed by Roberts et al. (1998) to calibrate image and 

reference endmembers. The available spectral library developed for the state of 

Rondônia (Roberts et al., 2002) was tested in the Sinop region but did not produced 

physically meaningful estimates of NPV (Figure 28a). Soil and NPV fractions were 

not spatially consistent as well. However, these problems did not happen with the 

standard image endmembers (Figure 28b). 

Data standardization is an important step towards the implementation of generic 

classification techniques for monitoring tropical forests (Woodcock et al., 2001). 

Among the existing image classification techniques, decision trees have the potential  
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to generate generic classification rules to map land cover classes and to sub-classify 

canopy damaged forests. Finding the right set of data training to generate optimal 

decision tree rules is the greatest challenge in decision tree classifier (Murthy, 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Fractions means and standard deviation (vertical error bar) 
estimated using reference endmembers (a) and standard image endmembers (b) 
for the Sinop transects. 
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classification schemes evaluated in this research (Figure 27). The tree mutation 

eventually creates a tree that is more accurate than the trees from the past 

generations. The accuracy improvement occurs because the mutation process 

eventually creates more optimal partitions in the terminal nodes. In addition, the 

GDTCA presented here is less human biased in the selection of training samples; the 

only requirement is that a very large training sample be collected to generate the 

initial random trees that will be used as an input in the genetic algorithm. 

In order to apply the techniques successfully developed and tested in the Sinop 

region (Chapters III) to map forest canopy damages, a forest/non-forest map is 

required. The land cover classification obtained with the GDTCA algorithm made it 

possible to generate this type of information using a generic set of decision rules. 

Examples of forest/non-forest maps obtained with GDTCA are shown in Figure 30.  

One classification problem detected was the confusion between second growth forest 

and old degraded forests. These classes have similar signatures in the Landsat 

spectral domain and a two-step classification will be required to distinguish them out 

accurately. First, second growth and forest regeneration classes should be combined 

with the forest class. The CCA technique proposed in this research can be used to 

map out the forest regeneration. The pixels of the combined second growth and 

forest regeneration classes that were not mapped by the CCA algorithm would be 

classified as second growth forest since log landings are not found in this type of 

environment. Another improvement in the Land Cover GDTCA is to include cloud 

and shadow classes in the classification scheme. The Landsat images used to  
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extracted training samples for the GDTCA were cloud free and for this reason these 

classes were not include in the GDTCA training sample. However, this will not 

represent a problem because both cloud and shadow have been successfully mapped 

with decision trees in the Amazon region (Roberts et al., 1998; 2002) and could be 

easily incorporated to the GDTCA. 

The GDTCA accuracy in sub-classifying canopy damaged forest degradation 

classes (e.g., logged, burned and clear cut) was 81% (Figure 28; Table 10). Because 

selective logging and burning may result in the same level of canopy damages and 

act synergistically, degrading the forests, it was not possible to sub-classify these 

two classes accurately. Figure 30 shows an example of an area that was both 

conventionally logged and burned, sub-classified into these classes. The forest 

degradation can be easily identified in a fraction color composite (R=NPV, G=GV, 

B=Soil; Figure 30b). The dark purple areas in the fraction color composite were 

classified as clear cut and the light purple as burned forests. The dark green areas in 

the fraction color composite were classified as logged forest (Figure 3oa). 

The canopy damage sub-classification were compared with the transect data 

collected in the Sinop region. The results agree with the type of degradation event 

observed during the forest inventory. These canopy damage sub-classification 

schemes were applied to other Landsat scenes and similar results were observed. 

However, more detailed field studies are required to validate the results presented in 

this dissertation. 
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Figure 29. Examples of forest  (green) and non-forest (magenta) maps 

obtained with the GDTCA. The Landsat scene is shown on the left; and on the 
right the sub-area indicated with the black box. 
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Figure 30. Example of forest canopy damage sub-classification for the 
transects 3, 4 and 5. In: a) forest degradation classes: burned (brown), logged 
(yellow) and clear cut (black). The corresponding fraction color  composite 
(R=NPV, G=GV and B=Soil) of the classified area is shown in (b). 
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Conclusions 

In this chapter, I demonstrated that generic image endmember can be obtained 

from well-reflectance calibrated Landsat images to generate fractions of GV, NPV, 

Soil and Shade. These fraction images are key to identify and detect canopy 

damaged forests as has been shown in Chapters II through IV. More accurate generic 

decision tree rules were also generated with a state-of-the art genetic algorithm 

perfected in this research. The GDTCA made it possible to overcome the limitations 

of the traditional partition algorithms used to generate decision tree rules, which 

include its human biased training sample selection and its top-to-bottom splitting 

optimization that creates suboptimal terminal nodes. 

It is not the objective of this research to provide an estimate of the forest area 

affected by canopy damage due to selective logging and forest fires for the 40 

Landsat scene areas used to test the generic endmembers. I have demonstrated in this 

dissertation that a time-series analysis would be required to accurately estimate the 

forest canopy damage areas. Mapping these types of degraded forests is an ongoing 

research effort that I will be leading in Brazil through Imazon, in collaboration with 

Dr. Roberts and Dr. Cochrane, from UCSB and University of South Dakota, 

respectively. More than 1,000 Landsat images covering the period of 2000 to 2004 

are being assembled and will be processed using the algorithms developed in this 

research to provide an estimate of the forest area impacted. 
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CHAPTER VI: Summary and Conclusions 

There has been a great need to develop agile remote sensing techniques and tools 

to monitor the Brazilian Amazon rain forests. Deforestation rates have been used to 

guide decision makers to formulate new policies to control the occupation and 

development of the Amazon region, which has generated environmental problems, 

particularly the loss of forest and biodiversity, at an unprecedented scale and rhythm. 

Selective logging and forest fires significantly degrade the Amazon forest, but they 

have not been monitored due to the lack of appropriate remote sensing techniques. I 

have developed new remote sensing techniques to detect and map forest degradation 

using Landsat images – the same type of images that have been used to monitor 

deforestation in the Amazon region. Landsat images were also chosen because the 

availability of extensive historical data for the Brazilian Amazon since the mid 70’s. 

The main results, for each objective, and future research directions are presented in 

the sub-sections below. 

6.1 Objective I  

In this study, a statistical multi-temporal analysis was applied to evaluate the 

capability of reflectance, vegetation indices (NDVI and SAVI), normalized 

difference infrared indices (NDII5 and NDII7) and fraction images, derived from 

spectral mixture analysis (SMA), to distinguish Intact Forest from four classes of 

degraded forests: Non-mechanized Logging, Managed Logging, Logged and Logged 

and Burned. For this purpose, a robust time-series data set of Landsat TM/ETM+ 
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images was used in conjunction with forest inventory transects and data on 

disturbance history. The study area is located near two important sawmill centers - 

Sinop and Claúdia, in Mato Grosso State - in the Southern Brazilian Amazon.  

Most of the remote sensing measures used to distinguish Intact Forest from 

degraded forests showed statistically significant changes. Fraction images, 

particularly Green Vegetation (GV) and Non-photosynthetic Vegetation (NPV) were 

the most effective means tested for identifying Logged and Logged and Burned forest 

in the region. The GV change, detected from Intact Forest to Logged and Logged and 

Burned Forest classes, persists no more than one year, but the NPV change is still 

significantly different for up to two years. In the second and third years following a 

degradation event, a significant regeneration signal was observed in reflectance and 

fraction images, which can be useful for identifying these types of forest disturbances 

in areas where optical satellite images cannot be acquired every year. 

Statistical multi-temporal analysis of reflectance, vegetation and infrared indices 

and fraction images, derived from SMA, showed that fraction images are more 

sensitive to changes in transitional forest environments due to selective logging and 

burning than the broad-band indices tested here. Low intensity logging, such as 

managed logging and non-mechanized logging are more difficult to distinguish from 

Intact Forest but a regeneration signal becomes significant in the second and third 

year. The time-series results showed that changes in GV and NPV fractions were 

higher when Intact Forest was changed to Logged and to Logged and Burned 

environments in the first year following the degradation event. In the Logged and 

Burned Forests, the NPV signal was more persistent, showing a burned signature 
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through the second year after forest burning. Therefore, both GV and NPV have the 

potential for use in change-detection classifiers for identifying and mapping Logged 

and Logged and Burned forests in the Brazilian Amazon, with images no more than 

one year apart. 

6.2 Objective II 

I proposed and validated a new spectral index, the Normalized Difference 

Fraction Index (NDFI), for enhanced detection of forest canopy damage caused by 

selective logging activities and associated forest fires. The NDFI synthesizes 

information from several component fraction images derived from spectral mixture 

models. Interpretation of the NDFI data is facilitated by a contextual classification 

algorithm (CCA) that enables accurate mapping of logging and fire-derived canopy 

damages. The CCA uses detected log landings from Soil fraction images as a starting 

location for a search through the NDFI image for canopy damage. This process 

allows us to separate canopy changes due to logging and associated forest fires from 

those caused by other natural disturbances. These methods were tested in the Sinop 

region, in the Southern Brazilian Amazon. Forest transect inventories, conducted 

along a gradient of degraded forests, were used to evaluate the performance of the 

NDFI. The NDFI was more sensitive to canopy damage than any individual 

component fraction and is shown to have the potential for further sub-classification 

of degradation levels in forest environments. Map accuracy of forest canopy damage 
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using the CCA classifier, assessed with aerial videography images, was 94%. The 

proposed NDFI–CCA classifier approach can be fully automated and, therefore, 

holds great promise as a forest monitoring tool in tropical forests. 

The NDFI and the CCA classifier can contribute to ongoing efforts to map and 

monitor logging operations in the Brazilian Amazon. NDFI enhances the detection 

of canopy damage over existing techniques and can be used in conjunction with the 

CCA algorithm to unambiguously map forest canopy damage caused by selective 

logging and burning. Additionally, the proposed techniques can be integrated with 

existing image processing methods to classify the damaged forest canopy areas into 

sub-classes of degradation. Image processing improvements, including the 

development of fast and generic SMA techniques for generating consistent NDFI 

images across the Amazon region, will be necessary in order to fully automate such 

forest degradation analyses. This is important for practical monitoring applications 

by government environmental agencies and private institutions tasked with the 

monitoring of certified logging operations. 

6.3 Objective III 

A time-series analysis comprising twenty-one Landsat images acquired between 

1984 and 2004 allowed quantification of the extent and annual rates of deforestation 

and degraded forests in Sinop region - Southern Brazilian Amazon. A novel spectral 

index, NDFI, and a CCA were used to first map forest canopy damaged areas due to 

selective logging and forest fires, the major anthropogenic forest degradation 
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processes in the study area. Next, a post-classification change detection algorithm 

was used to detect four types of forest changes: Forest to Clear-cut, Forest to Canopy 

Damage, Canopy Damage to Clear-cut and Canopy Damage to Forest. The forest 

change detection analysis revealed that the averge annual rate of forest degradation 

(2.8%) is greater than the average annual rate of deforestation (1%) over the twenty-

year time period. The time series analysis showed that 32% of the remaining forest 

area in 2004 had been degraded, and that 50% of this degraded forest had been 

damaged more than once. On average, 50% of the degraded forests are converted by 

deforestation within five years after the forest degradation event. Deforestation and 

forest degradation are independent events in the study area, and, therefore, must be 

accounted separately to capture the total forest area degraded by anthropogenic 

activities. 

The long term remote sensing canopy damage detection and change analyses 

showed that forest degradation exceeded deforestation rates on average by three 

folds in the Sinop region. I also demonstrated that deforestation and forest 

degradation are independent events and, therefore, must be accounted separately to 

capture the total forest area under anthropogenic pressure; that single date canopy 

damage classification captures partially the amount of degraded forests; and finally 

that recurrent logging and forest fires events were detected in 50% of the degraded 

forests. The techniques to map canopy damages associated with anthropogenic forest 

degradation and the change detection techniques presented in the study have the  
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potential to be applied in other tropical forest contributing to the understanding of 

the real state of these forested areas. 

 6.3 Objective IV 

Using the results of objectives I and II, I developed generic image classification 

algorithms for identifying, mapping and monitoring forest degradation caused by 

selective logging and forest fires in the Amazon forest. In Objective I, I 

demonstrated that fraction images derived from SMA can better detect degraded 

forests relative spectral bands and spectral indices. In Objective II, I developed a 

new spectral index (i.e., NDFI) based on fraction images that improved detection 

and mapping of forest degradation. The question addressed in Objective IV was: are 

the methods tested successfully in Sinop portable to other Amazon regions? 

In order to port the remote sensing techniques tested in Sinop, standard fraction 

images were required. I applied the methodology proposed by Small (2004) to the 

Amazon region and found out that standard fractions could be generated using 

generic endmembers defined in the Landsat six-dimensional spectral space. 

Physically meaningful and spatially consistent fractions and NDFI images were 

obtained for forty Landsat images, covering several regions of the Brazilian Amazon. 

Next, an automated decision tree classification based on genetic algorithm (GDTCA) 

was proposed to generate land cover maps, in particular a forest/non-forest map, 

which is key to the implementation of the forest degradation mapping technique 
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tested in Sinop. The GDTCA also generated higher accurate trees to sub-classify 

canopy damaged forests. 

6.4 Future Research 

I intend to continue this research by answering the following question: how 

much forest in the Amazon region is degraded? This future research will be 

conducted at Imazon, with other collaborators, including Dr. Roberts from UCSB 

and Dr. Cochrane from SDSU (South Dakota State University). Currently, I am 

assembling a very large data set of about 1,000 Landsat images for the Brazilian 

Amazon from 2000 to 2004. This imagery data set will enable basin wide analyses 

with a robust time series to characterize the impacts of selective logging and forest 

fires. The remote sensing techniques developed in the scope of this dissertation have 

already being applied to this very large data set of Landsat images and the results are 

consistent with the ones obtained here. Therefore, these remote sensing techniques 

have the potential to be applied to characterize the degraded forests in the tropics. 

Besides this research initiative, there are other research questions that I am 

interested in and could not be covered in this dissertation. The first one is the 

estimation of biophysical properties of degraded forests. I have demonstrated in one 

of the papers I wrote in the first year of my dissertation (Souza Jr., et al., 2003) that 

biomass of degraded forests could be estimated with NPV fractions. I have acquired 

forest biophysical data from seventy forest transects conducted in several regions of 

the Brazilian Amazon in collaboration with Dr. Roberts from UCSB. I intend to  
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extend the collaboration in this area with Dr. Cochrane, who has conducted about 

thirty forest transects in the Brazilian Amazon, to integrate remotely sensed data 

with forest biophysical properties to calibrate regression equations between these 

types of measurements. I envision that the NDFI – the new spectral index proposed 

and validated in the scope of this dissertation – has the potential to correlate better 

with forest biomass than NPV. 

Basin wide analysis with time series will also help establish relationships 

between fractions and NDFI with forest biophysical properties, such as biomass, 

allowing us to quantifying carbon fluxes due to forest degradation and deforestation 

in the Amazon region. The spatial distribution of carbon stocks is highly uncertain in 

the Amazon region (Houghton et al., 2001) and key information is needed to conduct 

research on carbon fluxes. Currently, I am collaborating with Marcio Sales and Dr. 

Kyriakidis to generate better estimates of carbon distribution over the Brazilian 

Amazon using geostatistical techniques. About 2,300 one-hectare plots of tree 

inventories from RADAMBRASIL Project were georeferenced and used in 

variogram analysis of biomass. The biomass variogram was used to provide the 

parameters for kriging interpolation to generate a map of biomass distribution for the 

state of Rondônia. The variogram and kriging analyses will be extended to the whole 

Brazilian Amazon to generate better maps of biomass distribution. Because the 

research results in this area are very promising, I envision using the remote sensing 

techniques presented in this dissertation to quantify carbon fluxes in the Amazon 

region due to forest degradation and deforestation. 
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Forest fragmentation is another type of forest degradation that has to be 

analyzed. Currently, Dr. Roberts is leading a research initiative at UCSB to assemble 

and process a robust data set of Landsat images encompassing 25 years and covering 

the whole state of Rondônia. Land cover maps have been produced using this very 

large data set and will allow us to characterize the forest fragmentation in this 

region. Fraction images and NDFI have been generated for Ji-Paraná and the 

preliminary results have shown that the degradation of forest fragments, in particular 

forest edges, can be enhanced with NDFI. The time series will also provide ways to 

estimate the rates of forest fragmentation and to characterize the temporal spectral 

signature of forest fragments. I am committed to help Dr. Roberts to continue this 

research activity after my Ph.D. graduation. 

Given the fact that the Landsat ETM+ is not fully operational and that Landsat 

TM 5 is producing degraded data, the remote sensing techniques proposed in this 

dissertation have to be tested in other types of optical data. SPOT images have 

already been successfully used to generate fractions of GV, NPV, Soil and Shade in 

the Eastern Amazon (Souza Jr., et al., 2003). The fraction images obtained with 

SPOT images were useful to identifying and mapping degraded forests, and, 

therefore, can be used to generate NDFI which enhances the detection and mapping 

of these type of forests. ASTER images, which have better spectral resolution than 

SPOT and Landsat images, are other potential source of data to apply the techniques 

proposed in this dissertation. MODIS images may be useful to detect degraded 

forests using NDFI using time series because the spectral signature of degraded 
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forests change very fast and these spectral changes may be sensitive to MODIS. 

Finally, mapping selective logging in flooded forests (Varzea) is a very challenge 

research issue that should be addressed with other type of remote sensing data (e.g., 

radar and lidar) and techniques. 
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