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Abstract.  This paper presents the prototype of a predictive model capable of describing
both magnitudes of deforestation and its spatial articulation into patterns of forest frag-
mentation. In a departure from other landscape models, it establishes an explicit behavioral
foundation for algorithm development, predicated on notions of the peasant economy and
on household production theory. It takes a ‘“‘bottom-up”’ approach, generating the process
of land-cover change occurring at lot level together with the geography of a transportation
system to describe regional landscape change. In other words, it translates the decentralized
decisions of individual households into a collective, spatial impact. In so doing, the model
unites the richness of survey research on farm households with the analytical rigor of spatial
analysis enabled by geographic information systems (GIS). The paper describes earlier
efforts at spatial modeling, provides a critique of the so-called spatially explicit model,
and elaborates a behavioral foundation by considering farm practices of colonists in the
Amazon basin. It then uses insight from the behavioral statement to motivate a GIS-based
model architecture. The model is implemented for a long-standing colonization frontier in
the eastern sector of the basin, along the Trans-Amazon Highway in the State of Pard,
Brazil. Results are subjected to both sensitivity analysis and error assessment, and sug-

gestions are made about how the model could be improved.
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INTRODUCTION

By now, there is general consensus that land-use and
land-cover change cause significant environmental im-
pacts at global and local scales (Stern et al. 1992).
Although changes in the earth’s vegetative cover occur
throughout the world, most attention in recent years
has focused on tropical deforestation, which releases
substantial quantities of carbon to the atmosphere, at
the same time as it destroys habitat for innumerable
species (Myers 1980). It should come as no surprise
that loss of tropical forest has emerged as a major glob-
al issue, sparking both public concern and scientific
research.

Two broad categories of scientific questions attend
the loss of tropical forest. On the one hand are the
many environmental impacts that follow in its wake.
Since Norman Myers first sounded the alarm of tropical
forest loss, ecologists and environmental scientists
have written extensively on this subject, and provided
the world community with an exhaustive account. By
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way of contrast to these ecological concerns are ques-
tions relating to the social and economic causes of for-
est loss. These reside largely within the purview of the
social sciences, which have spawned an extensive lit-
erature addressing the human drivers of tropical de-
forestation (Geist and Lambin 2001). This paper falls
within this latter category by focusing on the land-use
and land-cover change dynamics associated with col-
onization in the Amazon basin. Colonist farmers ac-
count for a substantial portion of deforestation both
worldwide and in the Amazon region (Walker et al.
2000, Geist and Lambin 2001).

The paper, however, goes one step further than much
of the work accomplished to date by social scientists.
In particular, it presents a model capable of predicting,
in addition to quantities of deforestation, the spatial
articulation of human behavior into patterns of forest
fragmentation, which is necessary for understanding
the biodiversity impacts of land-cover change. Most
models from the social sciences have been a-spatial
and statistical, attempting to discover, through statis-
tical inference, the main variables driving the process
of forest loss in the aggregate (Kaimowitz and Angel-
sen 1998). So-called spatially explicit models do utilize
spatial data in defining independent variables, but the
intent usually is to identify the driving variables
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The paper is organized as follows. In the next sec-
tion, Toward the explicit representation of space, we

consider the development of landscape change models.
This involves a discussion of spatial concepts in land-
scape ecology, and the convergence of work by land-
scape ecologists, economists, and geographers. In ad-
dition, we give a critique of the underlying behavioral

theory that motivates a wide range of model applica-
tions. This serves as an introduction to Conceptualizing

the behavioral process, which considers the behavior

site along the Trans-Amazon Highway, in the eastern
applied to colonization in the western sector of the
of the small holders actually engaged in tropical de-
forestation, and also provides a statement of the max-
imization problem we take to be representative of col-

The framework advanced is conceptually related to the
Amazon basin (State of Rondonia, Brazil).

sector of the basin (State of Par
DELTA model (Dale et al. 1993
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onist households in the Amazon basin. 7The GIS model
places this household model into spatial context, and
describes a GIS methodology for translating the be-
havior of households into forest fragmentation patterns.
Implementing the model discusses model implemen-
tation and presents results. A formal demonstration of
correspondence between prior modeling efforts and the
framework of this paper is provided in the Appendix.

TOWARD THE EXPLICIT REPRESENTATION OF SPACE
Ecological roots

Landscape ecology has long addressed the spatial
manifestations of ecosystems, including biotic and abi-
otic components and their functional relationships. Ear-
ly research addressed natural forces affecting the his-
tory and spatial configuration of patches (Pickett and
White 1985) and how such changes affected species
(Burgess and Sharpe 1981, Harris 1984). However, dif-
ficulty in conducting empirical work soon led to land-
scape models, which can be grouped into categories by
variable definitions and by degree of spatial resolution
implemented by the analyst (Baker 1989). Landscape
models have grown popular as tools for conducting
ecological research (Sklar and Constanza 1991), and
for managing natural resources (see, for example, Sklar
et al. [2001]).

The discussion here will consider only stochastic
spatial landscape approaches (Baker 1989), and within
this class, the transition probability model. The eco-
logical versions of this model type evidently have con-
verged with similar formulations from the social sci-
ences, producing the so-called spatially explicit model.
The framework to be advanced in this paper is sto-
chastic in nature, and motivated by a critique of the
spatially explicit model.

The probabilistic tradition in ecological modeling is
extensive. For landscape models, the fundamental con-
cept is Markovian, positing that land possesses a set
of possible cover states, and that land-cover change is
simply a stochastic transition from one state to another.
This may be represented as

nt! = Pn’

where n is a vector (superscripted in time) of j land-
cover types for a land parcel; and P is a j X j matrix
of transition probabilities (between covers), over the
period, 7 to 7 + 1. Although the Markovian framework
received early criticism due to alleged restrictions on
the matrix of transition probabilities (Turner 1987), it
was subsequently observed that P itself could be pa-
rameterized (Baker 1989). This led to the basic state-
ment now serving as a conceptual foundation for mod-
eling and estimation, namely

n! = P[z, x]n’. (1)

Here, n is as before, but P has been written in functional
form linking probabilities to variables in a vector, X,
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affecting land-cover change; 7 is retained to generalize
the statement for nonstationary conditions (Baker 1989).
One common specification of the functional form is lo-
gistic (e.g., Turner et al. 1996):

P = em/[1 + efx]. 2)

Although initial formulations were aspatial, treating
landscapes as aggregate units, dimensionality can be
added by adapting Eq. 1 to a coordinate system (Brow-
der et al. 1985, Franklin and Forman 1987, Gardner et
al. 1987, Wilkie and Finn 1988). Thus, states at time
t + 1 for a parcel with geographic coordinates (i, ;)
are given as

nf;l = Pf,j(’, X)ng,j' 3)

The specification of Eq. 2 can also be placed in spatial
context, and becomes operational once parameters as-
sociated with B are determined. Such parameters, in
turn, can be estimated through inference in what some
social scientists call ““spatially explicit models.”

Spatially explicit land-use models

The spatially explicit models considered in this paper
focus on statistical estimation of the probabilities of
change (e.g., Eq. 2) occurring at a highly disaggregate
level, typically the pixel. Data for the dependent var-
iable is derived through remote sensing, and indepen-
dent variables, reflecting mainly market access, are
generated by manipulating abstractions in geographic
information systems. Presently, ecologists, economists,
and geographers are engaged in specifications of such
models, and applications range across temperate and
tropical ecosystems (Ludeke et al. 1990, Bockstael
1996, Turner et al. 1996, Wear et al. 1996, 1998, Chom-
itz and Gray 1997, Mertens and Lambin 1997, 2000,
Nelson and Hellerstein 1997, Geoghegan et al. 2001).
Other modeling paradigms have been advanced to ac-
count for disaggregate changes in land cover (e.g., cel-
lular automata), but they do not necessarily aim at sta-
tistical estimation based on probability theory (Manson
2001).

In a spatially explicit model, land-cover change is
essentially a switch in the classification of a pixel of
arbitrary dimension. Such switches occur, by the theory
stated, on the basis of profit maximization, which leads
to reduced form equations that link the probability of
land-cover change to variables such as distance from
markets or local producer prices for specific commod-
ities. For example, Bockstael (1996) hypothesizes that
the probability a parcel, j, will be developed is

Prob(develop) = prob(Zp, > Zy,) “4)

where Z is present value minus discounted costs, and
is taken to consist of a systematic and random com-
ponent, for both developed (D) or undeveloped (N)
states at time 7 The implication is that the parcel is
developed only if it generates more value in that state,

95UdDIT SUOCWWO)) dANeal) a|qedidde ayy Aq pautanob aie sapile YO @sn Jo sa|nJ 1oy Aleiqi] auljuQ A3]Ip Uo (suonipuod
-pue-swiay/wodhapimAieiqijauljuo//:sdny) suonipuo) pue swidl 3y 39S ‘[§202/10/12] uo Aieiqry aunuo L3I 's3dvD Ad "+009-10/068L 0L/10p/wodA3)imAieiqgiautjuosjeuinofesa//:sdiy wouy papeojumoq ‘vds ‘7002 ‘2855661



S302 ROBERT WALKER ET AL.

an outcome which presumably would reflect purpose-
ful, economic behavior on part of the decision maker
charged with managing the parcel. Similarly, Chomitz
and Gray (1996) and Nelson and Hellerstein (1997)
hypothesize that a set of 7/ land uses, alternative to
undeveloped forest, provide potential rents, R, defined
on prices for inputs and outputs, and production mag-
nitudes. The observed land use on some arbitrary parcel
(and at some time, 7) is given as j, when R, > R, for
all i # J.

The model of Eq. 2 is meant to reflect socioeconomic
impacts on probabilities of land-cover change through
variables in the x vector, but the behavioral links be-
tween variable values and land-cover outcomes remain
obscure. This can be rectified by an appeal to discrete
choice theory and its explicit bridge between the mo-
tivations and consequences of human behavior. To this
end, the conditional logit framework of McFadden
(McFadden 1974, McFadden and Reid 1975, Maddala
1983, Ben-Akiva and Lerman 1985) can be transformed
into a ““logit” model requiring only data on the x vector
for the observational unit in question (e.g., a pixel).
Following Pfaft (1997), let rents (pure profit) associ-
ated with deforestation be R, and rents of intact forest,
R;. Let rent, in turn, possess systematic (/) and random
(e) components, or

R =V +e,i=df

Specify ¥V, as Bx, where B, is a vector of alternative
specific coefficients, and x is a vector of variables as-
sociated with each empirical observation taken on a
land parcel of some size (e.g., the pixel). Then defor-
estation on the parcel is observed with probability,

prob (V4 + &4 > V¢ + &). ®))

In applications of spatially explicit models, we do not
observe discrete choices based on observable attributes
of alternative land covers, as would be necessary in a
conditional logit model (Maddala 1983). Instead, we
observe the outcome only (of some land management
decision), namely a discrete measure associated with
land classification. We also observe a set of attributes
associated with the land parcel, namely the x vector.
Hence, the only way to operationalize an equation such
as Eq. 5 is to posit two B vectors, one for deforested
land and the other for intact forest. Doing so, we can
rewrite Eq. 5 in distribution form using the linear spec-
ification of V; (= BX):

prob[(e; — £4) < (Bg — Bo)X]
= F[(Bs — Box], or F[B*x],

where B* = B, — By Assuming that g; and ¢, are in-
dependent and Gumbell distributed (Ben-Akiva and Ler-
man 1985:71), we have

prob(deforestation) = erb*x/(1 + erp*x),
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Defining a new B vector based on the differences of
the underlying ones for the two land covers (i.e., B =
wp*) yields Eq. 1.1 in Hosmer and Lemeshow (1989:
6), or

prob(deforestation) = ef¥/(1 + ef¥). (6)

An estimate of this vector can be obtained using the
method of maximum likelihood (see Turner et al.
[1996], Chomitz and Gray [1997], and Nelson and Hell-
erstein [1997] for multinomial versions). Note that Eq.
6 is identical to the specification of Eq. 2, in which
case the discrete choice model founded on the notion
of profit (and utility) maximization provides a behav-
ioral basis for landscape change models.

The behavioral critique

The provision of a behavioral basis to landscape
change models represents a prime contribution by so-
cial scientists. Nevertheless, the behavioral assump-
tions that have been advanced may be questionable for
several reasons, which has implications for the utility
of derivative operational models. Limitations revolve
around two issues, namely the type of behavior as-
sumed and the appropriateness of the observation unit
used in estimation.

In general, spatially explicit models assume that land
owners manage their land to maximize rents (and prof-
its). This may be a reasonable assumption for settings
where property rights are never disputed, and where
the economic environment is well-organized into mar-
kets mostly free from catastrophic shocks. However,
tropical deforestation in the Amazon basin occurs in a
frontier setting, where the institutions necessary for
profit maximization may be lacking, and where income-
poor households eke out very difficult lives with few
economic resources beyond their own labor power (Dil-
lon and Scandizzo 1978, Ellis 1993, Alston et al. 1997).

Such an empirical reality suggests that behavior may
be different than profit maximization, an assumption
typical of microeconomic applications. In particular, a
household economy framework may be more appro-
priate, where the consumption and production deci-
sions of households are nonseparable. In this setting,
household demography is the main factor affecting land
allocation decisions, which is not the case when mar-
kets are present and households behave as profit max-
imizing firms (Nakajima 1969, Singh et al. 1986, Thor-
ner et al. 1986, Ellis 1993). An implication is that sta-
tistical applications using only data generated from GIS
software, which is common with the spatially explicit
model, will be miss-specified in the econometric sense
when they omit variables accounting for household de-
mography, information that can only be obtained from
fieldwork (Walker et al. 2000, Irwin and Geoghegan
2001). As a consequence, the estimates of the B values
will be biased. Another problem can arise by virtue of
the unit of observation. The spatially explicitly model
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generally uses pixel-level data for highly disaggregated
land parcels. Such parcels do not conform to the actual
management units for which land-cover decisions are
made. When information is lacking at pixel level for
how an entire property—of which the pixel forms
part—is managed, a second problem with specification
arises.

CONCEPTUALIZING THE BEHAVIORAL PROCESS

The model presented in this paper circumvents some
of these potential problems by developing a household
economy framework that theorizes the management of
land parcels as an integrated system. It is assumed that
households consist of subsistence farmers who practice
shifting cultivation, and that farm production is con-
strained by the productivity of the resource base and
by the availability of family labor. Although many have
pointed out that farm systems in the Amazon are dy-
namic, undergoing an evolution from shifting culti-
vation to ranches, perennials plantations, or some com-
bination (Walker and Homma 1966, McCracken et al.
1999, Perz 2001), model statements for both shifting
cultivation and dynamic systems yield the same control
variables that serve as the theoretical foundation for
the GIS-based model to be presented (Walker 2003).
The type of farming system we seek to represent has
very wide distribution throughout the Amazon basin
(Dale et al. 1993, Browder 1994, Jonas da Veiga et al.
1996, Whitcover and Vosti 1996, Pichon 1997, Walker
et al. 1997a, Fujisaka and White 1998, Vosti et al.
1998); moreover, colonist farmers are the region’s most
significant component of rural population (S. Perz, per-
sonal communication).

As in Walker (1999), the smallholder family is taken
to maximize yearly utility, not profits

2 BU( s). @)

Here, U is the household’s utility function, which is
discounted by a factor, B. Leisure is represented by 1,
and food, or subsistence, by s. The objective function
represented by Eq. 7 enables the linking of household
attributes to decisions about the nature of production
under shifting cultivation, such as fallow length and
areas of cleared land. As such, it advances agent-based
models of shifting cultivation that are primarily fo-
cused on production (Barrett 1991, Dvorak 1992,
Krautkraemer 1994, Albers and Goldbach 2000).

In the farming system to be considered, the shifting
cultivator first deforests land in order to develop a set
of farm plots, and then engages in rotational agricul-
ture, shifting from one plot to the next, and slashing
the vegetation that has accumulated during an inter-
vening period of fallow. To maintain focus on the spa-
tial model, assume that plots are used for only one year.
This is not a strong assumption, as Boserup’s classi-
fication of fallow systems (Boserup 1981) suggests that
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one or two years of cropping on cleared plots is com-
mon; moreover, very short cycles (one or two years)
are observed in the region (Walker et al. 1997a), given
that infertile soils and wet climate tend to hasten fer-
tility decline (Barrett 1991:177). Although not essen-
tial, the assumption of single year cropping facilitates
model development and exposition. As shall soon be-
come apparent, one of the choice variables available
to the household in maximizing utility (and welfare) is
the age at which secondary regrowth is slashed, sym-
bolized as a. Given a one-year use of plot, this is equal
to the number of plots in the rotational system, and
also to the number of deforestation events undertaken
by the household.

Let household labor endowment be L, and consider
two phases of household activity, indexed Ic and ag,
reflecting land clearance, or deforestation, and agri-
cultural activity, or rotation, respectively. Assuming a
labor—leisure trade-off (Ellis 1993), let /; and w, be the
leisure and work associated with the two phases, i €
(lc, ag). Given the labor endowment Z, it must be the
case that (Ellis 1993) w. + /,, = L and w,, + [, = L.

Work requirements are functions of the age of the
secondary vegetation used and the amount of land on
each plot, which is identical to the deforestation event
magnitude, or 7 (Dvorak 1992:810). (Note that 7 is the
amount of land needed to farm during some arbitrary
time period. Because this land is created from primary
forest on a yearly basis in the beginning, it also rep-
resents the amount of land deforested each year during
the farm’s deforestation phase.) Hence, total work in
the two periods is w, = rg(N) and w,, = rg(a), where
g (unit area cost function) is a function of time. The
variable a is as defined, namely age of secondary forest
(Pingali and Binswanger 1984, Angelsen 1994). (Note
that a represents the age of secondary forest observed
as a variable in both biomass recovery and labor re-
quirement functions. The specific a selected by the
farmer under optimization is also the number of de-
forestation events observed.) N is ‘“‘age” of mature
forest. Food production, s, for the two situations (use
of secondary forest or mature forest) is given as s, =
7fIN) for mature forest and s,, = 7f{a) for secondary
forest, where f{a) relates crop output per unit area to
age of vegetation, and N and a are as before (Barrett
1991, Dvorak 1992, Angelsen 1994, Walker 1999).
This function is predicated on the ecology of forest
succession, which shows increased biomass accumu-
lations as a function of recovery (Uhl 1987, Saldarriaga
et al. 1988, Brown and Lugo 1990, Lucas et al. 1993,
Vieira 1996).

The two-phase problem can now be restated as one
of maximizing household welfare, ¥, through the cre-
ation of a system of shifting cultivation or

a—1 o
VVS = max ZO BIU(IIC’ Slc) + Z B[U(lag’ Sag) (8)

through choice of /., /,, i, and s

lowing constraints on labor:

ag> Subject to the fol-
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0=1.=L~— [gN)f(N)]sic
0=1l,=L— [g@/f(@]s,

The two budget conditions are given by substituting
for work expenditures in the constraints associated with
labor endowment, and then eliminating » with a sub-
stitution using production relations.

The optimization problem may be reformulated by
rewriting both geometric series, and by observing that
leisure and subsistence are functions of @ and r. Thus,
the problem is now given as maximizing the following
equation, through the choice of @ and 7:

(1 = B9YUL, N, r) + BUL, a, r) 9

subject to rg(N) = L and rg(a) = L. This is a nonlinear
optimization problem with inequality constraints and
two control variables, rotation period (or age of sec-
ondary vegetation utilized, a) and single-period land
requirement (7). In principle, such a problem can be
solved numerically, using the appropriate procedures,
and parameterizations for household characteristics, in-
cluding size of family and household preferences for
subsistence goods and leisure (Miller 2000, Walker
2003).

The goal of the paper, however, is not to provide
explicit solutions to this particular problem, but to use
its theoretical argument to justify a focus on the control
variables themselves, namely a and r. The final for-
mulation of Eq. 9 has the effect of transforming house-
hold decisions about leisure and subsistence into a sim-
plified choice directly germane to the land-cover dy-
namic in question, namely the size of the plots cleared
(the deforestation event magnitude, ), and the number
of deforestation events, a, which is also the same as
the age at which secondary forest is slashed under the
assumption of a one year crop cycle. These newly de-
rived control variables are empirically observable
(Walker et al. 1997b).

Tue GIS MoODEL

The GIS model to be presented takes as its foun-
dation the behavioral rationale for the variables, a and
7, established in the preceding section. In essence, the
modeling effort is one of expressing the articulation of
a and r as functions of household attributes and site
characteristics, and in a two-dimensional colonization
space defined by a transportation system and property
boundaries. To reflect the empirical setting, the trans-
portation system is taken to consist of a development
“highway” intersected by a series of evenly spaced
settlement roads (travessdes in Pard; linhas in Ron-
donia). Organized along the highway and between the
roads are “‘lots,”” mostly 100-ha parcels typically as-
sociated with a single owner, and of variable dimen-
sion. In the state of Pard, for example, they are 500 X
2000 m on the highway, and 400 X 2500 m on the
settlement roads. Fig. 1 shows the colonization plan
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for the study area, a digitized version of cadastral maps
produced by the Brazilian colonization agency, Insti-
tuto de Colonizagdo e Reforma Agraria, or INCRA.
Other larger dimension lots may be observed also;
these were designed originally for occupation by
agroindustrial operations, and not smallholder coloni-
zation. The geometry of the initial land occupation
scheme provided for settlement roads to be spaced ap-
proximately every 5 km, which is an exogenous con-
dition of critical importance to the unfolding of the
fragmentation pattern.

Building the model

An INFO table of lot attributes (e.g., id, a, », and
counter items to hold temporary calculations) and three
ARC/INFO grid data structures are employed to rep-
resent different dimensions of the colonization space.
The grids were created with the same grain and extent,
and with coincident cell centers. Also, all cell sides
were set to 20 m because the value 20 is a factor com-
mon to typical lot widths and depths, and is approxi-
mate to the nominal cell resolution of Landsat TM im-
agery. The grids are described as follows:

1) An integer lot grid represents the spatial distri-
bution of property ownership via a key of unique lot
identification numbers. This data set was created by
digitizing the paper map of property boundaries pro-
vided by INCRA, and by converting digitized lot poly-
gons into gridded zones. The distribution of lot areas,
however, includes a number of large lots that are used
mostly for agroindustrial operations and, therefore, are
subject to different deforestation processes than those
associated with colonist smallholdings. Consequently,
a working subset of lots with area values less than 135
ha was selected, thereby restricting the analysis to
smallholdings only.

2) A vector data structure represents the transpor-
tation system, and was created by selecting arc seg-
ments associated with digitized property boundaries
coincident with known road features. The original col-
onization map, field notes, and two Landsat TM images
were used as ancillary guides during the selection pro-
cess. For analysis purposes, the vectorized road net-
work was converted into a binary grid. Cells in the
integer lot grid associated with roads in the binary net-
work grid were converted to NODATA in order to
maintain crisp cell identities. Ultimately, a derivative
of the binary network grid was created containing val-
ues at cell locations that represent Euclidean ground
distances from the development highway. This derived
grid serves as a frictional surface and, in effect, links
the spatial colonization process with time, at landscape
scale. The development highway is assumed to be the
axis from which colonization emanates. Settlement and
subsequent deforestation events are modeled to occur
sooner at locations closer to the highway, and later at
more distant locations.
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3) A floating-point grid with cell values representing
distances from the front of each lot serves as a second
frictional cost surface, this one at lot level. The front
of each lot, namely the property edge adjacent to the
road network, is taken as the axis from which defor-
estation processes begin on individual holdings. Thus,
deforestation events occur sooner at locations close to
the lot front, and later at more distant locations. Rather
than expressing distance values in ground units, they
are expressed as proportions (between 0 and 1) and
calculated by dividing individual cell distance values
by the maximum cell distance value associated with
each property. By virtue of the rectangular road and
lot geometries imposed on the landscape, this calcu-
lation serves to transform two-dimensional measures
of area into one-dimensional measures of depth (along
a unit vector).

Adding attributes to the model

Land-cover evolution is determined at lot level, and
is defined on the basis of four attributes, namely the
number of deforestation events (a), associated mag-
nitudes (r), distance from the development highway,
and distance from the lot front. Two of these attributes,
a and 7, are random variables generated from a prob-
abilistic model under the assumption that colonists pos-
sess only one holding. This assumption allows that pro-
cesses of land-cover change on individual lots be re-
garded as independent. Although property concentra-
tions do occur in the study region, this is generally not
the case for small holders (Walker et al. 2000, 2002).

The probabilistic model functions as follows. First,
the number of deforestation events, g, is determined as
a discrete random variable following a uniform distri-
bution, or @ ~ U(1, a,), where the upper bound to the
distribution, a,, is allowed to vary for sensitivity anal-
ysis. Next, a prediction of total deforestation is made
in regression format as ¥ = B, + B,X + & where B,
and B, are parameters, X is a lot-specific variable mea-
suring distance of the lot from the main highway, and
¢ is a normal random variable distributed as N(0, o?).
The parameter, B,, is also allowed to vary for sensitivity
analysis, while B, is fixed by regression results, as is
the variance of the error term, o Once a and Y have
been given for a lot, it is straightforward to calculate
the deforestation event magnitude as » = a/Y. The pa-
rameter values describing the number of deforestation
events are consistent with field observation (Dale et al.
1993, 1994, Walker et al. 19975).

The regression analysis was based on a sample of
261 farm households in the study region, undertaken
in 1996 (See Walker et al. 2002 and Perz and Walker
2002 for details). Using a sub-sample restricted by sat-
ellite coverage, the methods described in Walker et al.
(2000) were used in linking household data to amounts
of deforestation occurring on individual lots, as mea-
sured from remotely sensed data. A bivariate regression
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was run on this subsample to obtain the value for the
B, coefficient and the estimate of the error.

The probabilistic model demonstrates how house-
hold attributes and site conditions may be introduced
into the GIS architecture, thereby incorporating the be-
havioral imperative of the household optimization
problem stated in Eq. 9. A formal treatment showing
the nature of the correspondence between the Markov-
ian probabilities of spatial landscape models and the
probabilistic representation of this paper is provided in
the Appendix. The distributions on @ and r represent
a simplification of reality, based on incomplete infor-
mation on the households and sites. Nevertheless, one
of the most important variables affecting colonist land-
use decisions, namely market access, is taken into ac-
count by the regression results for distance to the de-
velopment highway (Walker et al. 2002).

IMPLEMENTING THE MODEL

Land-cover change on a lot begins with colonization,
which occurs earlier at short distances from the de-
velopment highway. With colonization—defined as the
occupation of a lot—land clearing occurs from front
to back in individual deforestation events (Walker
2003). As discussed, a lot possesses a fixed number of
events and a fixed event magnitude, and r hectares are
cleared every year for a years until the process stops.
Lots with the same number of deforestation events may
deforest at different times as a function of distance from
the development highway, with distant lots possibly
starting the process after near properties have finished.
Since the deforestation event magnitude is fixed at lot
level, the total amount of deforestation occurring on
any individual lot is given as the product of the number
of events and their magnitude, or @ X r. For modeling
purposes, this is converted to a proportion of lot size,
and maximum deforestation on any given lot may range
up to 100%. The process as described is depicted by
the cartographic model in Fig. 2 which, for simulation
purposes, was translated into the Arc macro language
(AML), a software-specific scripting language provid-
ed by ESRI for use with ARC/INFO software and data
formats.

The simulation design

The simulation is accomplished as follows. First,
values of a and r are drawn randomly for each lot and
stored in an INFO table, together with the key of unique
lot identification numbers, lot area values, and a set of
counter items. The a and » values can be linked to
gridded lot locations via a one-to-one database relation
using the key of unique lot identification numbers.

Given value assignments to individual lots and an
average rate of colonization into the forest (e.g., 1200
m/yr), the simulation proceeds through a sequence of
iterations (see Fig. 2) until a predetermined maximum
iteration number is reached. This sequence explicitly
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TaBLE 1. Predicted deforestation after 25 years.
Colonization No. cells Total area Producer’s
a, rate (m) b, deforested Area (ha) deforested (%) accuracy (%)
6 800 40 647 042 25 882 15.16 33.27
6 800 60 932352 37294 24.22 47.94
6 800 80 1114708 44 588 32.83 57.32
6 1600 40 740 292 29 612 19.22 38.07
6 1600 60 1134 637 45 385 34.21 58.35
6 1600 80 1402915 56 117 49.23 72.14

links time with the spatial processes of colonization
and deforestation. In brief, each iteration initiates col-
onization and deforestation processes farther from the
development highway and deeper into individual forest
holdings, respectively.

During each iteration (see Fig. 2), a subset of lots is
“colonized” by spatially selecting lots having cells
with “distance from the highway”’ values that are less
than the colonization distance value (e.g., [1200 m/yr]
X iteration value). Next, an ephemeral and one-to-one
database relation is created between the INFO table
containing lot attributes (e.g., id, a, », and counters)
and the colonized lots grid. By virtue of the one-to-
one relation, the number of records in the INFO table
is effectively reduced to the same subset contained
within the colonized lots grid. The subset is reduced
further to “‘activate’ only those lots that have expe-
rienced a number of deforestation events less than the
preassigned and randomly drawn event (a) value. As
stated above, the maximum deforestation on any given
lot may range up to 100%. The number of time steps
for which individual lots have been activated previ-
ously is stored in the INFO table as a counter item.
For this reduced set only, the amount of lot area de-
forested is calculated (e.g., » X [deforestation event
counter]). This value is important because it simulates
the amount of lot area that has been cleared up to a
certain time, and not the total amount expected to ac-
crue after the deforestation process has run its course.

The counter values for all colonized and activated
lots are then incremented by a value of 1 and the da-
tabase relation is severed. At this point, the INFO data
table is reestablished in its entirety, with the complete
history of all lots, activated or not, up to the current
time step.

Visualizing patterns of deforestation

A simple mathematical relationship exists between
measures of lot area and lot depth by virtue of the
rectangular road and lot geometries imposed on the
landscape. Consequently, measures of within-lot de-
forestation extents, which are transformed from two-
dimensional measures of deforested area (in ground
units) to one-dimensional measures of penetration
depth (along a unit vector), can be compared to one-
dimensional measures of lot depth (also along a unit
vector). Such proportional lot depth values are retained

in the lot distance grid. Accordingly, at the end of each
iteration and on a cell-by-cell basis, a new grid is cre-
ated and cells are classified as deforested (1) if the
proportional lot depth value for a particular cell lo-
cation is less than or equal to the proportional pene-
tration depth value for the lot to which it belongs. The
balance of non-NODATA grid cells is classified as not
deforested (0). This comparison routine generates a se-
quence of snapshots that represents accumulating ef-
fects of the deforestation process. At the end of each
time step, the simulation iteration value is incremented
by a value of 1 and the program continues until the
predetermined maximum iteration value is reached.

An illustrative simulation

The model was implemented for a region in the east-
ern sector of the Amazon basin as depicted in Fig. 1,
a stretch along the Trans-Amazon Highway running
about 100 km east and west, and 60 km north and south.
Sample results are presented in Table 1, showing the
amount of areas deforested as a function of different
sets of parameter values. In addition, a measure of mod-
el performance is given, so-called producer’s accuracy,
which has been adapted from the map accuracy liter-
ature (Card 1982, Nelson and Hellerstein 1997, Con-
galton and Green 1999). The parameters varied involve
the rate of colonization, and the intercept term on the
regression model used to generate the deforestation
event magnitudes; the upper bound to the number of
deforestation events, a,, remains fixed. Colonization,
or the household penetration of settlement roads, rang-
es from two lots per year (800 m) to four (1600 m).
The simulations reflect an outcome after 25 years.

Model performance and error can be assessed on the
basis of its ability to predict the actual aggregate mag-
nitude of deforestation, as well as its spatial pattern,
which have been referred to as quantity and locational
ability, respectively (Pontius 2000). This was accom-
plished by comparing model results to actual land cov-
er. To this end, an initial land-cover mosaic was created
using four adjacent Landsat 7 enhanced thematic map-
per plus (ETM+) scenes for 1999. Locational error was
minimized using ground control points along the Trans-
Amazon Highway and recognizable features on the set-
tlement roads. The mosaic and original scenes were
geographically corrected for axis translation and the
vector file of digitized lot boundaries used for the sim-
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ulations was registered to the processed mosaic using
the Trans-Amazon highway as reference, to at most
plus or minus four pixels, or =120 m error.

Six-band composites were derived from the rectified
scenes, which were then corrected for atmospheric and
bidirectional reflectance effects. The low gain thermal
band (band 6a, ETM+) was resampled to 30 X 30 m
resolution, and reinserted to derive a seven-band
ETM+ composite. Signatures for 14 classes were taken
from band 5-4-3 composites, seven-band principal
component analysis composites, and a red—near-infra-
red derivative image was used in supervised classifi-
cations to derive five themes. The five-theme images
were mosaicked, clipped to the extents of the lot bound-
ary, reclassed to two classes (forested and deforested),
and overlain with the simulations to produce the nec-
essary measures for error assessment.

Overall, the mosaic of classified images indicates an
aggregate deforestation of 25% for the study area, the
target deforestation magnitude for the simulations giv-
en colonization began in the early 1970s. As Table 1
shows, the aggregate deforestation magnitudes depict-
ed by the model bracket the actual amount of defor-
estation measured from the satellite imagery. The per-
cent predicted ranges from a little over 15% to 49%,
reflecting the variation in parameter values. As would
be expected, an increased colonization rate tends to
augment the magnitude of deforestation, as do incre-
ments in the regression intercept term. The defores-
tation rate overall appears more sensitive to the inter-
cept, at least for the magnitudes given. Thus, for a
colonization rate of two lots per year, deforestation
ranges from 15 to 32% as the intercept doubles from
40 to 80 ha. A similar effect holds for a colonization
rate of four lots per year, with deforestation ranging
from 19 to 49%. The ability of the model to reflect
spatial pattern can be indicated by producer’s accuracy,
a statistic used in cartographic and remote sensing ap-
plications to indicate the ability of a map to indicate
an actual feature of the landscape. In the case of a map
with land-cover features, producer’s accuracy is the
probability (conditional) that the map shows some land
cover at an arbitrary point, given that that particular
land cover is actually observed at the point (Congalton
and Green 1999).

In this application, producer’s accuracy is used as a
measure of model performance, and is taken to be the
conditional probability of predicting a deforested pixel
given that the pixel is actually deforested (Nelson and
Hellerstein 1977, Pontius 2000). Table 1 shows the
range associated with the selected parameter values to
be from 33 to 72%. While the 72% value is quite high,
it is worth noting that the percent deforested predicted
by the model is significantly greater than the actual
amount for this parameter setting. On the other hand,
the parameter setting that produces an aggregate de-
forestation of 24% shows a producer’s accuracy of
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48%, considerably lower than the maximum value
achieved.

The results of a sample model run are depicted in
Fig. 3. Note that the masked-out part of the map con-
tains lands held by agroindustrial interests, which are
not covered by the conceptual framework describing
land use of small holders. The color codes indicate
correct predictions (both deforestation and persistent
forest cover) as well as over predictions (deforestation
predicted where none occurs) and under predictions
(deforestation occurs where none predicted). Overall,
the basic structure of deforestation is captured, al-
though the results do show error patterns with sub-
stantial over prediction in settlement roads to the north-
east, under prediction along the lots located on the
Trans-Amazon Highway to the north, and considerable
under prediction on one of the deeply penetrating set-
tlement roads to the southwest.

CONCLUDING REMARKS

These results demonstrate the feasibility of modeling
the deforestation process in two dimensions and pro-
ducing a visual pattern of forest fragmentation. Al-
though not undertaken in this application, fragmenta-
tion metrics could be calculated for artificial landscapes
generated by the model, adding additional output of
potential utility to landscape ecologists. The model is
a prototype with obvious directions for extension and
adaptation. Important among these is the development
of more realistic distributions for the key variables, a
and 7, and in particular better empirical representation
of their links to household attributes and site condi-
tions. In addition, there is accumulating evidence of
cross-generational dynamics, whereby secondary de-
forestation processes evidently unfold as colonist chil-
dren expand on the early efforts of their parents (Perry
and Walker 2002). Such effects, and alterations of dis-
tributions, are entirely tractable within the GIS model
architecture. The errors observable in Fig. 3 also in-
dicate the need to introduce into the model structure
sensitivity to topography and road quality. Hilly relief
to the northeast probably inhibits agricultural devel-
opment, while well-maintained roads, such as the one
to the southwest with excessive under prediction, are
likely to be cleared quickly and intensively farmed.

Perhaps of greater importance on conceptual grounds
is the recognition that the model presented remains
mute on an important piece of the forest fragmentation
story, namely the process of road building that pene-
trates the forest in the first place. Under colonization,
government bureaucrats typically build roads on a fixed
pattern. Along the Trans-Amazon Highway, for ex-
ample, federal government built settlement roads every
5 km, north and south, to a distance of 6 km on average
(Simmons 2002). However, once farmers began arriv-
ing, these initial spurs were extended in search of wood
and also to make room for late arrivals. The framework
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Predictions

B ocforested

L | Over
| | Under

- Forested

Note:

Deforested = correctly predicted deforestation

Over = predicts deforestation when not deforested

Under = does not predict deforestation when deforestation occurs
Forested = correctly predicts forest

15 30 Kilometers ’t

Sample simulation result. ‘““Deforested”” means deforestation was correctly predicted; ““over” means the model

predicts deforestation when none occurred; ‘““‘under’ means the model does not predict deforestation when it did occur; and

“forested”” means the model correctly predicts forest.

as elaborated here has taken the road system to be
exogenous, but road building is clearly a dynamic pro-
cess, as are road extensions beyond a government’s
initial effort. In the study area, the extension of roads—
in this case by government—did continue beyond the
government’s original plan to about twenty kilometers
on both north and south sides of the Trans-Amazon
Highway, in response to growing demand for land by
migrants. Then, loggers engaged in road building in
select areas with rich trees stands. The current system
of transportation, however, mainly reflects the desires
and actions of in-migrating small holders who insisted
that extension continue in straight lines according to
the original plan, in order to facilitate regularization of
holdings. The maps of Figs. 1 and 2 represent this
extension process, although the model has taken its
spatial articulation as given.

Landscape models of tropical forest loss and frag-
mentation will remain only partially complete until

they conceptualize and implement road building as an
outcome of human behavior. The model presented in
this paper does provide an approach that treats an im-
portant component of the overall process, namely the
land-use and land-cover change associated with colo-
nist agriculture. With current plans by the Brazilian
government to pursue its efforts at road-building and
infrastructure improvements (de Cassia 1997, Laurance
and Fearnside 1999), land-cover change precipitated
by colonists can be expected to intensify. Landscape
models such as the one presented in this paper could
serve as useful policy tools for assessing the impacts
of such government initiatives.
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APPENDIX

A relationship between the Markovian probability of de-
forestation occurring on some pixel, as modeled by the spa-
tially explicit model, and the framework developed in this
paper can be established as follows. Note that these proba-
bilities of necessity are nonstationary, since whether or not
a particular pixel is deforested in the GIS model depends, in
part, on the time of colonization. Let the deforestation prob-
ability be given as P,(D) for some arbitrary pixel, where i is
its x coordinate (in meters), j is its y coordinate (in meters),
and D is the binary event affecting the pixel, deforestation.
Assume, further, that all pixel locations have been normalized
to individual lots. From the assumption regarding spatial evo-
lution on a property, P, (D) = P,(D), w # v. Define some
integer, 7, as the “‘tier”” number indicating distance from the
development highway. All pixels associated with some lot
possess the same tier number, which represents whether or
not colonization has reached it. So long as the deforestation
process has not begun, or so long as 7 < 7, the probability
of deforestation at tier 7 is 0, or P, (D) = 0 for r < 7.

Now consider a non-negative integer k such that as 7, = 7,
+thk=t,+(a, —1),or0=k=aqa, — 1.Timesr =1+ k
define a period of active deforestation on lots at tier 7. Let a
be uniform, or a ~ U(1, a,), and let r possess a density
function, f,(). Note that in the GIS model, r is given as Y/a,
where Y is total deforestation predicted to occur on some lot.
To facilitate the exposition, we assume the unconditional dis-
tribution. Define () as the sample space of @, or @ = 1 U 2
U ... U a,. Intersecting deforestation event, D, with the
universe of possible a values yields P, (D/t) = P,[(D N Q)/
7] for some 7 = 7, + k. Expanding the intersection event and
applying Bayes’ Rule gives P, [{[(D/a = 1) N a = 1] U [(D/
a=2)Na=21U... [(Dla=a,)Na=a,}/t=1+k]
The individual intersection probabilities are 1/a,P,(ar >
4007) for realizations of a less than or equal to the number
of deforestation events that have actually taken place, which
is (k + 1). Recall that 400 is the width of the lot in meters,
in which case 400/ is the area cleared, given i. Here, area
(ar) is measured in square meters. For realizations of @ > k
+ 1, the deforestation process has not run its course, and the
probability of deforestation is the same as for the realization
a = k + 1. For such upper-tail values of a (relative to the
value of k), the probabilities of deforestation are identical, or
P,[(D/a > k + 1)] = P,[(k + 1)r > 400i]. Note that defor-
estation given a > k + 1 is composed of the union of all

deforestation conditional on earlier times in the process. How-
ever, since the event, [j» > 400i] C [(k + 1)r > 400i], for j
< k + 1, the probability of the union becomes P, [(k + 1)r
> 400i].

Combining terms, the overall probability of deforestation
at time t, unconditional on the a value, is

2

Thus, the nonstationary Markovian probability for 7 = 7, +

kis
SORSCH
\7 : a,) a=1 a

a, — k 4007
+ (= 1 -
() - )

Consider now the situation as 7 — . The possibility for
additional deforestation expires once 7, + (a, — 1) = . At
this point, the probability of deforestation becomes invariant
in time, or stationary, and can be written as

400i
Ph‘<r > 71)
Py(r > 400) | 2

k
> P (ar > 400i)
a=1

a, — k .
+ (—)Pm[(k + 1y > 4004].
au

Py (D) =
u au
( 4001‘)
P \r>—
au
+
all
or
1) & 400i
Py (D/e) = | — 1 -/ .
o= ()81 - af2)

These relationships demonstrate the formal correspondence
between Markovian probabilities of change common in spa-
tial landscape models and the behavioral factors considered
in this paper. In particular, household characteristics are re-
flected through the distributions on the land-cover change
parameters, a and r, which in turn are derived from behavioral
theory. As mentioned in the text, greater realism would be
possible by considering the nature of the assumed distribu-
tions on a and r.
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